应用化学 ›› 2023, Vol. 40 ›› Issue (6): 806-819.DOI: 10.19894/j.issn.1000-0518.220363
收稿日期:
2022-11-08
接受日期:
2023-05-05
出版日期:
2023-06-01
发布日期:
2023-06-27
通讯作者:
熊兴泉
基金资助:
Xing-Quan XIONG1(), Hui ZHANG1,2, Li-Zhu GAO1
Received:
2022-11-08
Accepted:
2023-05-05
Published:
2023-06-01
Online:
2023-06-27
Contact:
Xing-Quan XIONG
About author:
xxqluli@hqu.edu.cnSupported by:
摘要:
木质素是地球上一类含量丰富且重要的天然高分子材料,其地位仅次于纤维素。在木本植物中,木质素的质量分数达到25%。由于木质素的化学惰性和结构复杂性,其实际应用受到了很大的限制。因此,利用化学方法对木质素进行结构改性是将木质素转化为木质素基功能材料的有效途径,对实现资源和环境的可持续发展有着重要意义。本文综述了近10年来木质素功能化发展和应用的相关研究进展,重点介绍了木质素在污水处理、异相催化以及阻燃等方面应用的研究成果,并对该领域未来的研究提出思考和展望,为后续更加深入的研究提供相关的依据和参考。
中图分类号:
熊兴泉, 张辉, 高利柱. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819.
Xing-Quan XIONG, Hui ZHANG, Li-Zhu GAO. Progress in Chemical Modification and Application of Lignin[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819.
1 | DAHMEN N, LEWANDOWSKI I, ZIBEK S. Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives[J]. GCB Bioenergy, 2019, 11(1): 107-117. |
2 | WANG F Q, OUYANG D H, ZHOU Z Y, et al. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage[J]. J Energy Chem, 2021, 57(6): 247-280. |
3 | SANGHA A K, PARKS J M, STANDAERT R F, et al. Radical coupling reactions in lignin synthesis: a density functional theory study[J]. J Phys Chem B, 2012, 116(16): 4760-4768. |
4 | 任苗苗, 吕惠生, 张敏华, 等. 木质素资源利用的研究进展[J]. 高分子通报, 2012(8): 44-49. |
REN M M, LV H S, ZHANG M H, et al. Research progress on the application of lignin[J]. Chin Polym Bull, 2012(8): 44-49. | |
5 | WU R, LIU S S, WANG Q, et al. High strength and multifunctional polyurethane film incorporated with lignin nanoparticles[J]. Ind Crop Prod, 2022, 177: 114526. |
6 | 姚庆鑫, 谢建军, 刘军霞, 等. 离子强度对膨润土/木质素磺酸钠接枝丙烯酰胺-马来酸酐复合吸附树脂吸附Pb2+/Cu2+的影响[J]. 应用化学, 2015, 32(8): 940-947. |
YAO Q X, XIE J J, LIU J X, et al. Effect of ionic strength on the adsorption of Pb2+ and Cu2+ onto bentonite/sodium lignosulfonate graft-polymerized with acrylamide and maleic anhydride[J]. Chin J Appl Chem, 2015, 32(8): 940-947. | |
7 | ZHANG B, GUO T, LIU Y X, et al. Sustainable production of benzylamines from lignin[J]. Angew Chem Int Ed, 2021, 60(38): 20666-20671. |
8 | ZHANG B, GUO T, LI Z, et al. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction[J]. Nat Commun, 2022, 13: 3365. |
9 | WANG S C, BAI J X, INNOCENT M T, et al. Lignin-based carbon fibers: formation, modification and potential applications[J]. Green Energy Environ, 2022, 7(4): 578-605. |
10 | SINGH S K, OSTENDORF K, EURING M, et al. Environmentally sustainable, high-performance lignin-derived universal adhesive[J]. Green Chem, 2022, 24(6): 2624-2635. |
11 | 岳霞, 刘魁, 林夏露, 等. 中国七大主要水系重金属污染现况[J]. 预防医学论坛, 2014, 20(3): 209-223. |
YUE X, LIU K, LIN X L, et al. Current status of heavy metal pollution in seven major river systems in China[J]. Preventive Med Tribune, 2014, 20(3): 209-223. | |
12 | 李航彬, 钱波, 黄聪聪, 等. 钡盐沉淀法处理六价铬电镀废水[J]. 电镀与涂饰, 2014, 33(9): 391-395. |
LI H B, QIAN B, HUANG C C, et al. Treatment of hexavalent chromium-containing electroplating wastewater by barium salt precipitation[J]. Electroplat Finish, 2014, 33(9): 391-395. | |
13 | 张佳玲, 方芳, 董锦云, 等. 改性污泥质生物炭吸附污水中有机污染物的研究进展[J]. 环境化学, 2021, 40(10): 3144-3157. |
ZHANG J L, FANG F, DONG J Y, et al. Research progress on the removal of organic contaminants from wastewater by modified sludge-based biochar[J]. Environ Chem, 2021, 40(10): 3144-3157. | |
14 | 高利亚. 重金属水污染处理方法的研究进展[J]. 化学工程师, 2022, 4: 56-60. |
GAO L Y. Research progress of heavy metal water pollution treatment methods[J]. Chem Eng, 2022, 4: 56-60. | |
15 | 刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014, 36(4): 54-59. |
LIU F. Treatment of chromium containing heavy metal wastewater by reduction and sedimentation process[J]. Environ Pollution Control, 2014, 36(4): 54-59.. | |
16 | LIU X L, ZHU H X, QIN C R, et al. Adsorption of heavy metal ion from aqueous single metal solution by aminated epoxy-lignin[J]. Bioresources, 2013, 8(2): 2257-2269. |
17 | GE Y Y, SONG Q P, LI Z L. A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution[J]. Ind Eng Chem Res, 2015, 23: 228-234. |
18 | MENG Y, LI C, LIU X, et al. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water[J]. Sci Total Environ, 2019, 685: 847-855. |
19 | HEO J W, AN L L, CHEN J S, et al. Preparation of amine-functionalized lignins for the selective adsorption of methylene blue and Congo red[J]. Chemosphere, 2022, 295: 133815. |
20 | 蔡雷, 熊兴泉, 唐忠科, 等. 基于巯基-炔的 “点击” 化学研究进展[J]. 化工进展, 2011, 30(9): 1982-1989. |
CAI L, XIONG X Q, TANG Z K, et al. Research progress of thiol-yne click chemistry[J]. Chem Ind Eng Prog, 2011, 30(9): 1982-1989. | |
21 | 徐源鸿, 熊兴泉, 蔡雷, 等. 巯基-烯点击化学[J]. 化学进展, 2012, 24(2/3): 385-394. |
XU Y H, XIONG X Q, CAI L, et al. Thiol-ene click chemistry[J]. Prog Chem, 2012, 24(2/3): 385-394. | |
22 | JIN C, ZHANG X Y, XIN J N. Thiol-ene synthesis of cysteine-functionalized lignin for the enhanced adsorption of Cu(Ⅱ) and Pb(Ⅱ)[J]. Ind Eng Chem Res, 2018, 57(23): 7872-7880. |
23 | JIN C, ZHANG X Y, XIN J N. Clickable synthesis of 1,2,4-triazole modified lignin-based adsorbent for the selective removal of Cd(Ⅱ)[J]. ACS Sustain Chem Eng, 2017, 5(5): 4086-4093. |
24 | QUINTANA G C, ROCHA G J M, GONALVES A R, et al. Evaluation of heavy metal removal by oxidised lignins in acid media from various sources[J]. Bioresources, 2008, 3(4): 1092-1102. |
25 | 马英梅, 方桂珍, 张锐, 等. 谷氨酸-木质素吸附剂的制备及对 Pb2+的吸附性能[J]. 东北林业大学学报, 2009, 37(10): 88-90. |
MA Y M, FANG G Z, ZHANG R, et al. Synthesis of glutamic acid lignin adsorbent and its adsorption to Pb2+[J]. J Northeast Forestry Univ, 2009, 37(10): 88-90. | |
26 | LU Q F, HUANG Z K, LIU B, et al. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids[J]. Bioresource Technol, 2012, 104: 111-118. |
27 | SANTOS D A S D, RUDNITSKAYA A, EVTUGUIN D V. Modified kraft lignin for bioremediation applications[J]. J Environ Sci Heal Part A, 2012, 47(2): 298-307. |
28 | DIZHBITE T, JASHINA L, DOBELE G, et al. Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery[J]. Holzforschung, 2013, 67(5): 539-547. |
29 | 曹胜磊, 耿增超, 王月玲, 等. 化学改性提高木质素水溶性及其对 Zn2+的络合能力[J]. 农业环境科学学报, 2016, 35(11): 2216-2223. |
CAO S L, GENG Z C, WANG Y L, et al. Modification of lignin for improvement the water-soluble property and ability to complex with Zn2+[J]. J Agro-Environ Sci, 2016, 35(11): 2216-2223. | |
30 | 周艳, 张红平, 张建平, 等. 多齿配体改性碱木质素对Hg2+和Cd2+的吸附性能[J]. 环境化学, 2016, 35(9): 1952-1960. |
ZHOU Y, ZHANG H P, ZHANG J P, et al. Adsorption of Cd2+/Hg2+ in aqueous solutions using chelating ligands modified alkali lignin[J]. Environ Chem, 2016, 35(9): 1952-1960. | |
31 | UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective[J]. Chem Rev, 2016, 116(4): 2275-2306. |
32 | GE, Y. Y, LI, Z. L. KONG Y, et al. Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms[J]. J Ind Eng Chem, 2014, 20(6): 4429-4436. |
33 | YAN M F, LI Z L. Microwave-assisted functionalized lignin with dithiocarbamate for enhancing adsorption of Pb(Ⅱ)[J]. Mater Lett, 2016, 170: 135-138. |
34 | XU F, ZHU T T, RAO Q Q. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal[J]. J Environ Sci, 2017, 53: 132-140. |
35 | 王延宝. 改性木质素磺酸盐制备及吸附重金属离子研究[J]. 材料科学与工艺, 2021, 29(6): 65-73. |
WANG Y B. Study on preparation of modified lignin sulfonate and adsorption for heavy metal ions[J]. Mater Sci Technol, 2021, 29(6): 65-73. | |
36 | YAO Q X, XIE J J, LIU J X. Adsorption of lead ions using a modified lignin hydrogel[J]. J Polym Res, 2014, 21(6): 465-471. |
37 | 姚庆鑫, 谢建军, 刘军霞, 等. 离子强度对膨润土/木质素磺酸钠接枝丙烯酰胺-马来酸酐复合吸附树脂吸附Pb2+/Cu2+的影响[J]. 应用化学, 2015, 32(8): 940-947. |
YAO Q X, XIE J J, LIU J X, et al. Effect of ionic strength on the adsorption of Pb2+ and Cu2+ onto bentonite/sodium lignosulfonate graft-polymerized with acrylamide and maleic anhydride[J]. Chin J Appl Chem, 2015, 32(8): 940-947. | |
38 | CIESIELCZYK F, BARTCZAK P, KLAPISZEWSKI L. Treatment of model and galvanic waste solutions of copper(Ⅱ) ions using a lignin/inorganic oxide hybrid as an effective sorbent[J]. J Hazard Mater, 2017, 328: 150-159. |
39 | WU L J, HUANG S Q, ZHENG J, et al. Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel[J]. Inter J Biol Macrom, 2019, 140: 538-545. |
40 | KATARZYNA S S, DORATA K, LUKASZ K. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(Ⅱ)[J]. Chem Eng J, 2017, 314: 169-181. |
41 | MARULASIDDESHWARA M B, KUMAR P R. Synthesis of Pd(0) nanocatalyst using lignin in water for the Mizoroki-Heck reaction under solvent-free conditions[J]. Intern J Biolog Macrom, 2015, 83: 326-334. |
42 | HEMANATHAN K, RAIMO A. Microwave-assisted esterification of tall oil fatty acids with methanol using lignin-based solid catalyst[J]. Energy Fuel, 2016, 30(11): 9451-9455. |
43 | 代红光, 刘旭慧, 王丽荣, 等. 生物质木质素磺酸催化合成N-取代吡咯[J]. 化学通报, 2018, 31(6): 929-933. |
DAI H G, LIU X H, WANG L R, et al. Synthesis of N-substituted pyrroles using lignosulfonic acid as biomass-based catalyst[J]. Chem Bull, 2018, 31(6): 929-933. | |
44 | ZENG S, ZHANG X, BAI L B, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chem Rev, 2017, 117(14): 9625-9673. |
45 | SULEMAN S, YOUNUS H A, AHMAD N, et al. Triazole based cobalt catalyst for CO2 insertion into epoxide at ambient pressure[J]. Appl Catal A, 2020, 591: 117384. |
46 | LIU M S, LI X, LIANG L, et al. Protonated triethanolamine as multi-hydrogen bond donors catalyst for efficient cycloaddition of CO2 to epoxides under mild and cocatalyst-free conditions[J]. J CO2 Util, 2016, 16: 384-390. |
47 | WU S, TENG C, CAI S, et al. Triphenylphosphine-based functional porous polymer as an efficient heterogeneous catalyst for the synthesis of cyclic carbonates from CO2[J]. Nanoscale Res Lett, 2017, 12: 609. |
48 | LAI S L, GAO J B, XIONG X Q. Rosin-based porous heterogeneous catalyst functionalized with hydroxyl groups and triazole groups for CO2 chemical conversion under atmospheric pressure condition[J]. React Funct Polym, 2021, 165: 104976. |
49 | LAI S L, GAO J B, ZHANG H, et al. Luffa sponge supported dendritic imidazolium ILs with high-density active sites as highly efficient and environmentally friendly catalysts for CO2 chemical fixation[J]. J CO2 Util, 2020, 38: 148-157. |
50 | XIONG X Q, ZHANG H, LAI S L, et al. Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2[J]. React Funct Polym, 2020, 149: 104502. |
51 | KIM J, OH S J, HWANG H. Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (populus albaglandulosa)[J]. Polym Degrad Stabil, 2013, 98(9): 1671-1678. |
52 | BREBU M, TAMMINEN T, SPIRIDON I. Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS[J]. J Anal Appl Pyrolysis, 2013, 104: 531-539. |
53 | LAUBERTE L, FABRE G, PONOMARENKO J. Lignin modification supported by DFT-based theoretical study as a way to produce competitive natural antioxidants[J]. Molecules, 2019, 24(9): 1794. |
54 | SUEISHI Y, NII R. A comparative study of the antioxidant profiles of olive fruit and leaf extracts against five reactive oxygen species as measured with a multiple free-radical scavenging method[J]. J Food Sci, 2020, 85(9): 2737-2744. |
55 | CHEN F, DAI H H, DONG X L, et al. Physical properties of lignin-based polypropylene blends[J]. Polym Comp, 2011, 32(7): 1019-1025. |
56 | YU Y M, FU S Y, SONG P G. Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene[J]. Polym Degrad Stabil, 2012, 97(4): 541-546. |
57 | LIU L N, QIAN M B, SONG P A, et al. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites[J]. ACS Sustainable Chem Eng, 2016, 4(4): 2422-2431. |
58 | WAGEMAKER T A L, CARVALHO C R L, MAIA N B, et al. Sun protection factor, content and composition of lipid fraction of green coffee beans[J]. Indust Crops Prod, 2011, 33: 469-473. |
59 | ARGYROPOULOS D S. Quantitative phosphorus 31 NMR analysis of lignins, a new tool for the lignin chemist[J]. J Wood Chem Technol, 1994, 14(1): 45-63. |
60 | NICHOLS J A, KATIYAR S K. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms[J]. Arch Dermatol Res, 2010, 302(2): 71-83. |
61 | SADEGIFAR H, VENDITTI R, JUR J, et al. Cellulose-lignin biodegradable and flexible UV protection film[J]. ACS Sustainable Chem Eng, 2017, 5: 625-631. |
62 | ARGYROPOULSO D S, MENACHEM S B, KAPLAN D L. Biopolymers from renewable resources[M]. New York: Springer, 1998, 12: 292-322. |
63 | SADEGHIFAR H, VENDITTI R, JUR J S. Cellulose-lignin biodegradable and flexible UV protection film[J]. ACS Sustainable Chem Eng, 2017, 5(1): 625-631. |
64 | 吴强林, 方红霞, 丁运生. 木质素基酚醛树脂泡沫塑料的结构与性能研究[J]. 工程塑料应用, 2012, 40(11): 69-73. |
WU Q L, FANG H X, DING Y S. Structure and properties of lignin based phenolic foam[J]. Eng Plast Appl, 2012, 40(11): 69-73. | |
65 | 杨昇, 王钧, 李改云, 等. 尿素改性木质素基酚醛树脂的性能[J]. 林业工程学报, 2018, 3(5): 28-33. |
YANG S, WANG J, LI G Y, et al. Performances of lignin-phenol-formaldehyde resin modified by urea[J]. J Forestry Eng, 2018, 3(5): 28-33. | |
66 | 楼宏铭, 刘青, 张海彬. 造纸竹浆黑液的接枝磺化工艺及高效减水剂[J]. 高分子材料科学与工程, 2009, 25(6): 103-106. |
LOU H M, LIU Q, ZHANG H B. Graft sulfonation process of bamboo pulp black liquor used as superplasticizer[J]. Poly Mater Sci Eng, 2009, 25(6): 103-106. | |
67 | 孙红岩, 韩洪燕, 王晓平, 等. 改性木质素高效减水剂作用机理的研究[J]. 应用化工, 2013, 42(8): 1370 -1373. |
SUN H Y, HAN H Y, WANG XP, et al. Study on the water-reducing mechanism of modified lignin superplasticizer[J]. Appl Chem Ind, 2013, 42(8): 1370 -1373. | |
68 | 张坤, 张莎莎, 王晓俊, 等. 玉米秸秆糖醇黑液化学改性制备木质素基减水剂的研究[J]. 化工新型材料, 2017, 45(6): 258-260. |
ZHANG K, ZHANG S S, WANG X J, et al. Modification product of black liquor of sugar alcohol from corn stover as ligno-sulfate based plasticizer[J]. New Chem Mater, 2017, 45(6): 258-260. | |
69 | 邱峰, 范雷. 木质素改性聚羧酸减水剂研究(Ⅰ)-合成、表征与性能[J]. 精细化工, 2019, 36(12): 2512-2520. |
QIU F, FAN L. Lignin modified polycarboxylic superplasticizer(Ⅰ)-synthesis, characterization and properties[J]. Fine Chem, 2019, 36 (12): 2512-2520. | |
70 | TAO X, SHI L S, SUN M J, et al. Synthesis of lignin amine asphalt emulsifier and its investigation by online FTIR spectrophotometry[J]. Adv Mater Res, 2014, 3079(1818): 72-76. |
71 | CHEN M, SHI L S, TIAN F, et al. Synthesis of triethylenetetraamine/formaldehyde modified lignin amine asphalt emulsifier and its investigation by online FTIR spectrophotometry[J]. Adv Mater Energy Sustain, 2017: 315-322. |
72 | 任世学, 倪海月, 田金玲, 等. 碱木质素交联 PVA共混啶虫脒缓释薄膜的制备及性能[J]. 北京林业大学学报, 2015, 37(12): 116-121. |
REN S X, NI H Y, TIAN J L, et al. Preparation and performance of alkali lignin-PVA crosslinked blend slow-release acetaniprid film[J]. J Beijing For Univ, 2015, 37(12): 116-121. | |
73 | FERTAHI S, BERTRAND I, AMJOUD M B, et al. Properties of coated slow-release triple superphosphate (TSP) fertilizers based on lignin and carrageenan formulations[J]. ACS Sustainable Chem Eng, 2019, 7(12): 10371-10382. |
74 | 尹静, 李栋, 李杨文正, 等. 改性木质素缓释肥的养分释放特征评价方法比较[J]. 农业资源与环境学报, 2022, 39(6): 1155-1163. |
YIN J, LI D, LI Y W Z, et al. Evaluation of nutrient release characteristics of modified lignin-coated slow-release fertilizers[J]. J Agr Resour Environ, 2022, 39(6): 1155-1163. |
[1] | 范鹏辉, 刘杰, 娄生辉, 唐涛. 环氧树脂中磷系阻燃剂协效体系的研究进展[J]. 应用化学, 2023, 40(5): 653-665. |
[2] | 许祥民, 邓杰, 杜雨琪, 沈红亮, 安泽坤, 孙才英. 螺环磷酰咪唑阻燃棉织物的热解挥发物分析及热解机理推测[J]. 应用化学, 2023, 40(3): 380-388. |
[3] | 林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78. |
[4] | 王克, 汪啸, 宋术岩. 甲烷直接催化氧化制备甲醇近期研究进展[J]. 应用化学, 2022, 39(4): 540-558. |
[5] | 张晨晨, 刘昱含, 赵文杰, 刘佰军, 孙昭艳, 刘万利, 王艳淼, 呼微. 氧化有机溶剂木质素基亲水性上浆剂的制备及其在聚丙烯中的应用[J]. 应用化学, 2022, 39(12): 1854-1861. |
[6] | 冷冰冰, 朱春卉, 石埕荧, 王志鹏, 刘洋, 张宏岩, 许文革, 刘佰军. 含环三磷腈衍生物的辐照交联聚乙烯基复合材料的制备及阻燃性能[J]. 应用化学, 2022, 39(11): 1672-1679. |
[7] | 周伯龙, 张明聪, 史翎. 反应型有机硅阻燃剂研究进展[J]. 应用化学, 2021, 38(12): 1556-1575. |
[8] | 吉婉丽, 钟少锋, 余雪满. 阻燃超疏水棉纤维的制备及性能[J]. 应用化学, 2020, 37(3): 301-306. |
[9] | 游歌云, 冯彬, 范方方, 杨昌杰, 梁聪. 含亚胺结构新型磷-氮协效阻燃化合物的合成及对环氧树脂的阻燃作用[J]. 应用化学, 2020, 37(2): 144-154. |
[10] | 文芸, 王磊, 程骋, 王洲, 裴锋, 贾蕗路, 李志美, 邓瑞红. 大电流加速蓄电池循环试验测试分析[J]. 应用化学, 2020, 37(11): 1309-1315. |
[11] | 孙志聪, 孟庆磊, 马荣鹏, 葛君杰, 刘长鹏, 邢巍. 功能化氮化碳对Pd基甲酸分解制氢催化剂性能的促进作用[J]. 应用化学, 2020, 37(10): 1187-1194. |
[12] | 朱德钦, 生瑜, 郑守扬, 童庆松. 三聚氰胺聚磷酸盐/季戊四醇配比、协效剂组及表面改性对聚丙烯基木塑复合材料的膨胀阻燃影响[J]. 应用化学, 2019, 36(6): 649-657. |
[13] | 谢亚桥, 赵佳欣, 李杰兰, 徐子迪, 曲江英, 田运齐, 高峰. 氯化钠模板诱导木质素基多孔炭的制备及其超级电容器性能[J]. 应用化学, 2019, 36(4): 482-488. |
[14] | 刘懿德, 陈嘉炼, 李红周, 杨松伟, 罗富彬, 陈庆华. 协效阻燃聚丙烯的阻燃性能[J]. 应用化学, 2019, 36(10): 1165-1171. |
[15] | 陈南,钟贵林,张国峰. 石墨烯在聚合物阻燃材料中的应用及作用机理[J]. 应用化学, 2018, 35(3): 307-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||