应用化学 ›› 2023, Vol. 40 ›› Issue (5): 653-665.DOI: 10.19894/j.issn.1000-0518.220311
收稿日期:
2022-09-22
接受日期:
2023-01-10
出版日期:
2023-05-01
发布日期:
2023-05-26
通讯作者:
刘杰,唐涛
基金资助:
Peng-Hui FAN1,2, Jie LIU2(), Sheng-Hui LOU2, Tao TANG2()
Received:
2022-09-22
Accepted:
2023-01-10
Published:
2023-05-01
Online:
2023-05-26
Contact:
Jie LIU,Tao TANG
About author:
liujie@ciac.ac.cnSupported by:
摘要:
近年来,出于环保等方面的考虑,一些卤系阻燃剂被逐渐淘汰,磷系阻燃剂作为卤系阻燃剂的替代品备受关注。然而,高效的磷系阻燃剂通常会在提高阻燃性能的同时产生更多的烟雾,因此需要与协效剂搭配使用。本文介绍了磷系阻燃剂在环氧树脂中的阻燃机理,综述了环氧树脂中磷系阻燃剂的协效体系的研究进展,包括无机协效剂、有机协效剂及有机-无机杂化协效剂等,并对环氧树脂体系中磷系阻燃剂的协效体系的未来发展趋势进行了展望。
中图分类号:
范鹏辉, 刘杰, 娄生辉, 唐涛. 环氧树脂中磷系阻燃剂协效体系的研究进展[J]. 应用化学, 2023, 40(5): 653-665.
Peng-Hui FAN, Jie LIU, Sheng-Hui LOU, Tao TANG. Research Progress on Synergists of Phosphorous Flame Retardants in Epoxy Resin[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 653-665.
No. | Phosphorus-containing flame retardant/synergist | Amount of phosphorus-containing flame retardant/synergist/% | △PHRR/% | △THR/% | △PSPR/% | △TSP/% | Char residue/% | LOI/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | PPAP/EOVS | 9/1 | 81.2 | 24.9 | 62.5 | 56.7 | 31.5 | 32.4 | [ |
2 | CEMP/OMMT | 15/3 | 77.9 | 59.3 | 67.5 | 27.2 | 30.6 | [ | |
3 | APP/TNB | 3.33/1.67 | 67.8 | 25.4 | 20.2 | 28.7 | [ | ||
4 | APP/CuO-GNS | 28/2 | 64.6 | 48.1 | 53.7 | 54.9 | 41 | 41 | [ |
5 | BP-TiO2 | 2 | 59 | 50.4 | 20.4 | 36.5 | [ | ||
6 | MAPP/Cu2O | 18/2 | 59 | 45.5 | 62.5 | 63.5 | 41 | 35 | [ |
7 | W-Zr-MOF-DOPO | 3 | 57.8 | 39.8 | 36.1 | 25.5 | 32.2 | [ | |
8 | HPCTP/GNS@ILs | 7.2/1.8 | 55.5 | 44.3 | 10.6 | +1 | 33.8 | [ | |
9 | HNT@PZF-Cu | 3 | 52.2 | 20.5 | 40.3 | 23.2 | 33.8 | [ | |
10 | PDE/CS | 6/3 | 41.6 | 15.1 | +3.8 | +11.3 | 9.5 | 32.3 | [ |
11 | LPP-MoSe2 | 3 | 39.0 | 24.9 | 15.3 | 29 | [ | ||
12 | APP/HCTFA | 11.1/2.8 | 38.6 | 37.3 | 37.8 | 45.6 | 31.5 | 32 | [ |
13 | AgNC@BP | 5 | 34.2 | 9.6 | 6.0 | 10 | 29.5 | [ | |
14 | [Dmim]Es/GNS | 7.5/1 | 31.1 | 30.0 | 32.2 | [ | |||
15 | HPCTP/H-U | 6/3 | 30.1 | 39.2 | 19.6 | 35.2 | [ | ||
16 | PHDT@FeCo-LDH | 4 | 28.2 | 52.1 | 38.8 | 29.7 | [ |
表1 UL-94测试达到V-0等级的EP复合材料的阻燃性能数据总结
Table 1 Summary of flame retardancy data of EP composites reaching V-0 in UL-94 test
No. | Phosphorus-containing flame retardant/synergist | Amount of phosphorus-containing flame retardant/synergist/% | △PHRR/% | △THR/% | △PSPR/% | △TSP/% | Char residue/% | LOI/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | PPAP/EOVS | 9/1 | 81.2 | 24.9 | 62.5 | 56.7 | 31.5 | 32.4 | [ |
2 | CEMP/OMMT | 15/3 | 77.9 | 59.3 | 67.5 | 27.2 | 30.6 | [ | |
3 | APP/TNB | 3.33/1.67 | 67.8 | 25.4 | 20.2 | 28.7 | [ | ||
4 | APP/CuO-GNS | 28/2 | 64.6 | 48.1 | 53.7 | 54.9 | 41 | 41 | [ |
5 | BP-TiO2 | 2 | 59 | 50.4 | 20.4 | 36.5 | [ | ||
6 | MAPP/Cu2O | 18/2 | 59 | 45.5 | 62.5 | 63.5 | 41 | 35 | [ |
7 | W-Zr-MOF-DOPO | 3 | 57.8 | 39.8 | 36.1 | 25.5 | 32.2 | [ | |
8 | HPCTP/GNS@ILs | 7.2/1.8 | 55.5 | 44.3 | 10.6 | +1 | 33.8 | [ | |
9 | HNT@PZF-Cu | 3 | 52.2 | 20.5 | 40.3 | 23.2 | 33.8 | [ | |
10 | PDE/CS | 6/3 | 41.6 | 15.1 | +3.8 | +11.3 | 9.5 | 32.3 | [ |
11 | LPP-MoSe2 | 3 | 39.0 | 24.9 | 15.3 | 29 | [ | ||
12 | APP/HCTFA | 11.1/2.8 | 38.6 | 37.3 | 37.8 | 45.6 | 31.5 | 32 | [ |
13 | AgNC@BP | 5 | 34.2 | 9.6 | 6.0 | 10 | 29.5 | [ | |
14 | [Dmim]Es/GNS | 7.5/1 | 31.1 | 30.0 | 32.2 | [ | |||
15 | HPCTP/H-U | 6/3 | 30.1 | 39.2 | 19.6 | 35.2 | [ | ||
16 | PHDT@FeCo-LDH | 4 | 28.2 | 52.1 | 38.8 | 29.7 | [ |
1 | YANG S, HUO S, WANG J, et al. A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate[J]. Compos B Eng, 2021, 207: 108601. |
2 | LIU X F, XIAO Y F, LUO X, et al. Flame-retardant multifunctional epoxy resin with high performances[J]. Chem Eng J, 2022, 427: 132031. |
3 | ZHANG S, JIANG Y, SUN Y, et al. Preparation of flame retardant and conductive epoxy resin composites by incorporating functionalized multi-walled carbon nanotubes and graphite sheets[J]. Polym Adv Technol, 2021, 32(5): 2093-2101. |
4 | GUO H, WALTERS R N, LYON R E, et al. Effect of phosphorus on soot formation and flame retardancy in fires[J]. Fire Safety J, 2021, 120: 103068. |
5 | BISHOP D, SMITH D. Combined pyrolysis and radiochemical gas chromatography for studying the thermal degradation of epoxy resins and polyimides. Ⅰ. the degradation of epoxy resins in nitrogen between 400 ℃ and 700 ℃[J]. J Appl Polym Sci, 1970, 14: 205-233. |
6 | LEVCHIK S, CAMINO G, MARIA P L, et al. Mechanistic study of thermal behavior and combustion performance of epoxy resins: Ⅰ homopolymerized TGDDM[J]. Polym Adv Technol, 1995, 6: 53-62. |
7 | LEVCHIK S, WEIL E. Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature[J]. Polym Int, 2004, 53: 1901-1929. |
8 | ZHOU X, QIU S, MU X, et al. Polyphosphazenes-based flame retardants: a review[J]. Compos B Eng, 2020, 202: 108397. |
9 | HE W, SONG P, YU B, et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants[J]. Prog Mater Sci, 2020, 114: 100687. |
10 | WANG P, CHEN L, XIAO H, et al. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin[J]. Polym Degrad Stab, 2020, 171: 109023. |
11 | FENG J, SUN Y, SONG P, et al. Fire-resistant, strong, and green polymer nanocomposites based on poly(lactic acid) and core-shell nanofibrous flame retardants[J]. ACS Sustainable Chem Eng, 2017, 5: 7894-7904. |
12 | 李娜娜, 姜国伟, 周光远, 等. 有机磷类阻燃剂的合成及应用进展[J]. 应用化学, 2016, 33: 611-623. |
LI N N, JIANG G W, ZHOU G Y, et al. Synthesis and application progress of organic phosphorus-containing flame retardants[J]. Chin J Appl Chem, 2016, 33: 611-623. | |
13 | YANG S, WANG J, HUO S, et al. Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: strong bonding of different carbon residues[J]. Polym Degrad Stab, 2016, 128: 89-98. |
14 | YANG H, YU B, SONG P, et al. Surface-coating engineering for flame retardant flexible polyurethane foams: a critical review[J]. Compos B Eng, 2019, 176: 107185. |
15 | XUE Y, SHEN M, ZHENG Y, et al. One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant polylactic acid with a submicron-grained structure[J]. Compos B Eng, 2020, 183: 107695. |
16 | RAN S, FANG F, GUO Z, et al. Synthesis of decorated graphene with P,N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid[J]. Compos B Eng, 2019, 170: 41-50. |
17 | HUO S, SONG P, YU B, et al. Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives[J]. Prog Polym Sci, 2021, 114: 111366. |
18 | LIU S, FANG Z, YAN H, et al. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO[J]. RSC Adv, 2016, 6: 5288. |
19 | WANG A, ZHANG F, XING L, et al. Effect of aluminum diethylphosphinate and its synergist on flame-retardant effects of epoxy resin[J]. J Therm Anal Calorim, 2022, 147: 7277-7287. |
20 | ZHANG K, WU H, WU R, et al. Effect of Ni2+ chelated to the surface of PBFA on the charring flame retardant and smoke suppression properties of epoxy resin[J]. Polym Eng Sci, 2020, 60: 2541-2549. |
21 | YUAN Y, PAN Y T, ZHANG Z, et al. Nickle nanocrystals decorated on graphitic nanotubes with broad channels for fire hazard reduction of epoxy resin[J]. J Hazard Mater, 2021, 402: 123880. |
22 | H.ABD E W, M ABD E F, AYMAN H A, et al. Synthesis and characterization of some arylhydrazone ligand and its metal complexes and their potential application as flame retardant and antimicrobial additives in polyurethane for surface coating[J]. J Organomet Chem, 2015, 791: 99-106. |
23 | CHEN M J, LIN Y C, WANG X N, et al. Influence of cuprous oxide on enhancing the flame retardancy and smoke suppression of epoxy resins containing microencapsulated ammonium polyphosphate[J]. Ind Eng Chem Res, 2015, 54: 12705-12713. |
24 | YE T P, LIAO S F, ZHANG Y, et al. Cu(0) and Cu(II) decorated graphene hybrid on improving fireproof efficiency of intumescent flame-retardant epoxy resins[J]. Compos B Eng, 2019, 175: 107189. |
25 | CHEN X, LIU L, ZHUO J, et al. Influence of iron oxide green on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites[J]. J Therm Anal Calorim, 2015, 119: 625-633. |
26 | CHEN X, LIU L, JIAO C. Influence of iron oxide brown on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites[J]. Adv Polym Technol, 2015, 34: 21516. |
27 | LIU L, CHEN X, JIAO C. Influence of ferrocene on smoke suppression properties and combustion behavior of intumescent flame-retardant epoxy composites[J]. J Therm Anal Calorim, 2015, 122: 437-447. |
28 | CHEN X, LIU L, JIAO C, et al. Influence of ferrite yellow on combustion and smoke suppression properties in intumescent flame-retardant epoxy composites[J]. High Perform Polym, 2014, 27: 412-425. |
29 | ZOU B, QIU S, WANG J, et al. Revealing and modeling of fire products in gas-phase for epoxy/black phosphorus-based nanocomposites[J]. Chemosphere, 2022, 305: 135504. |
30 | FEI X, WANG X, CAI W, et al. Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS2 hybrid sheets on reducing fire hazards of polyamide 6 composites[J]. J Hazard Mater, 2016, 320: 252-264. |
31 | WANG S, YU B, ZHOU K, et al. A novel phosphorus-containing MoS2 hybrid: towards improving the fire safety of epoxy resin[J]. J Colloid Interface Sci, 2019, 550: 210-219. |
32 | FENG X, CAI W, WANG X, et al. Hierarchical MoS2/polyaniline binary hybrids with high performance for improving fire safety of epoxy resin[J]. Polym Adv Technol, 2022, 33: 163-172. |
33 | XIAO Y, JIANG G, MA C, et al. Construction of multifunctional linear polyphosphazene and molybdenum diselenide hybrids for efficient fire retardant and toughening epoxy resins[J]. Chem Eng J, 2021, 426: 131839. |
34 | WANG X, KALALI E N, WAN J T, et al. Carbon-family materials for flame retardant polymeric materials[J]. Prog Polym Sci, 2017, 69: 22-46. |
35 | 彭凡畅, 陈小随, 张爱清, 等. 超支化聚磷酰胺包覆碳纳米管的可控制备及阻燃应用[J]. 中国塑料, 2021, 35(9): 55-63. |
PENG F C, CHEN X S, ZHANG A Q, et al. Controllable preparation of hyperbranched polyphosphoramide coated carbon nanotubes and its application for flame retardancy[J]. China Plast, 2021, 35(9): 55-63. | |
36 | 季亚明, 杨雅茹, 姚勇波, 等. 碳纳米球基氮-磷-硫复合阻燃剂的合成及其对环氧树脂的阻燃性能[J]. 材料研究学报, 2021, 35(12): 918-924. |
JI Y M, YANG Y R, YAO Y B, et al. Synthesis of carbon nanosphere-based nitrogen-phosphorus-sulfur compound flame retardant and flame retardancy of CNSs-H-D reinforced epoxy resin[J]. Chin J Mater Res, 2021, 35(12): 918-924. | |
37 | SAI T, RAN S, GUO Z, et al. Recent advances in fire-retardant carbon-based polymeric nanocomposites through fighting free radicals[J]. SusMat, 2022: 1-24. |
38 | 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217. |
CHEN J L, WANG S, DU X S. Advances in epoxy/two-dimensional nanomaterial composites[J]. Mater Rep, 2021, 35(17): 17210-17217. | |
39 | NETKUEAKUL W, FISCHER B, WALDER C, et al. Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite[J]. Polymers, 2020, 12: 2049. |
40 | 张凯伦, 陈伊阳, 姚猛, 等. 石墨烯负载离子液体的制备及其与六苯氧基环三磷腈协效阻燃环氧树脂的性能研究[J]. 中国科学:化学, 2021, 51(9): 1283-1292. |
ZHANG K L, CHEN Y Y, YAO M, et al. The preparation of ionic liquid doped graphene composite and its synergistic flame retardant effect with hexaphenoxy cyclotriphosphazene on epoxy resin[J]. Sci Sin Chim, 2021, 51(9): 1283-1292. | |
41 | 徐子策, 尚垒, 敖玉辉. 含磷离子液体/石墨烯环氧复合材料力学及阻燃性能研究[J]. 化工新型材料, 2022, 50(6): 112-116. |
XU Z C, SHANG L, AO Y H. Study on mechanical and flame retardant properties of phosphorus-containing ILs/GO/EP composite[J]. New Chem Mater, 2022, 50(6): 112-116. | |
42 | 吕佳帅男, 狄凯莹, 蔡鹏麟, 等. 阻燃剂THPPA的合成及与埃洛石复配在环氧树脂中的应用[J]. 高分子材料科学与工程, 2021, 37(9): 80-88, 98. |
LV J S N, DI K Y, CAI P L, et al. Synthesis and application of phosphorous-containing flame retardant THPPA compounding with halloysite nanotubes in epoxy resin[J]. Polym Mater Sci Eng, 2021, 37(9): 80-88, 98. | |
43 | WENG Z, SENTHIL T, ZHUO D, et al. Flame retardancy and thermal properties of organoclay and phosphorous compound synergistically modified epoxy resin[J]. J Appl Polym Sci, 2016, 133: 43367. |
44 | YU H, XU X, XIA Y, et al. Synthesis of a novel modified chitosan as an intumescent flame retardant for epoxy resin[J]. e-Polymers, 2020, 20: 303-316. |
45 | NAZ F, ZUBER M, ZIA K, et al. Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes[J]. Carbohydr Polym, 2018, 200: 54-62. |
46 | LIU X, GU X, SUN J, et al. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane[J]. Carbohydr Polym, 2017, 167: 56-363. |
47 | ZAHRA H, SAWADA D, GUIZANI C, et al. Close packing of cellulose and chitosan in regenerated cellulose fibers improves carbon yield and structural properties of respective carbon fibers[J]. Biomacromolecules, 2020, 21: 4326-4335. |
48 | WANG X, ZHOU C, DAI S, et al. Function of chitosan in a DOPO-based flame retardant modified epoxy resin[J]. J Appl Polym Sci, 2022, 139: 51593. |
49 | LIU Y, XU B, QIAN L, et al. Impact on flame retardancy and degradation behavior of intumescent flame-retardant EP composites by a hyperbranched triazine-based charring agent[J]. Polym Adv Technol, 2020, 31: 3316-3327. |
50 | LIU S Y, HAMERTON I. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Prog Polym Sci, 2002, 27: 1661-1712. |
51 | DOGAN M, DOGAN S D, SAVAS L, et al. Flame retardant effect of boron compounds in polymeric materials[J]. Compos B Eng, 2021, 222: 109088. |
52 | CHEN S, AI L, ZENG J, et al. Synergistic flame-retardant effect of an aryl boronic acid compound and ammonium polyphosphate on epoxy resins[J]. Chem Select, 2019, 4: 9677-9682. |
53 | ZHANG W, CAMINO G, YANG R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance[J]. Prog Polym Sci, 2017, 67: 77-125. |
54 | 徐伟华, 郑宇, 沈向阳, 等. 不同POSS对磷-硅协同阻燃环氧树脂性能的影响[J]. 中国塑料, 2022, 36: 115-120. |
XU W H, ZHENG Y, SHEN X Y, et al. Effects of different POSS on properties of phosphorus-silicon synergistic flame retardant epoxy resin[J]. China Plast, 2022, 36: 115-120. | |
55 | LI S, LIU Y, LIU Y, et al. Synergistic effect of piperazine pyrophosphate and epoxy-octavinyl silsesquioxane on flame retardancy and mechanical properties of epoxy resin[J]. Compos B Eng, 2021, 223: 109115. |
56 | LIAO Q, HE M, ZHOU Y, et al. Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities[J]. ACS Appl Mater Interfaces, 2018, 10: 29136- 29144. |
57 | PAN Y T, ZHANG Z, YANG R. The rise of MOFs and their derivatives for flame retardant polymeric materials: a critical review[J]. Compos B Eng, 2020, 199: 108265. |
58 | JIANG J, HUO S, ZHENG Y, et al. A novel synergistic flame retardant of hexaphenoxycyclotriphosphazene for epoxy resin[J]. Polymers, 2021, 13: 3468. |
59 | WANG X, WU T, HONG J, et al. Organophosphorus modified hollow bimetallic organic frameworks: effective adsorption and catalytic charring of pyrolytic volatiles[J]. Chem Eng J, 2021, 421: 129697. |
60 | XIA L, MIAO Z, DAI J, et al. Facile fabrication of multifunctional flame retardant epoxy resin by a core-shell structural AgNC@boronate polymer[J]. Chem Eng J, 2022, 438: 135402. |
61 | HONG J, WU T, WANG X, et al. Copper-catalyzed pyrolysis of halloysites@polyphosphazene for efficient carbonization and smoke suppression[J]. Compos B Eng, 2022, 230: 109547. |
62 | SUI Y, SIMA H, SHAO W, et al. Novel bioderived cross-linked polyphosphazene microspheres decorated with FeCo-layered double hydroxide as an all-in-one intumescent flame retardant for epoxy resin[J]. Compos B Eng, 2022, 229: 109463. |
[1] | 熊兴泉, 张辉, 高利柱. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819. |
[2] | 许祥民, 邓杰, 杜雨琪, 沈红亮, 安泽坤, 孙才英. 螺环磷酰咪唑阻燃棉织物的热解挥发物分析及热解机理推测[J]. 应用化学, 2023, 40(3): 380-388. |
[3] | 林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78. |
[4] | 唐永鑫, 聂立武. 环氧树脂掺量对发光树脂透水混凝土性能的影响[J]. 应用化学, 2022, 39(11): 1665-1671. |
[5] | 冷冰冰, 朱春卉, 石埕荧, 王志鹏, 刘洋, 张宏岩, 许文革, 刘佰军. 含环三磷腈衍生物的辐照交联聚乙烯基复合材料的制备及阻燃性能[J]. 应用化学, 2022, 39(11): 1672-1679. |
[6] | 周伯龙, 张明聪, 史翎. 反应型有机硅阻燃剂研究进展[J]. 应用化学, 2021, 38(12): 1556-1575. |
[7] | 顾军渭, 程蓓, 杨旭彤. 液晶功能化氮化硼/液晶环氧树脂导热复合材料的制备[J]. 应用化学, 2021, 38(10): 1382-1388. |
[8] | 吉婉丽, 钟少锋, 余雪满. 阻燃超疏水棉纤维的制备及性能[J]. 应用化学, 2020, 37(3): 301-306. |
[9] | 游歌云, 冯彬, 范方方, 杨昌杰, 梁聪. 含亚胺结构新型磷-氮协效阻燃化合物的合成及对环氧树脂的阻燃作用[J]. 应用化学, 2020, 37(2): 144-154. |
[10] | 文芸, 王磊, 程骋, 王洲, 裴锋, 贾蕗路, 李志美, 邓瑞红. 大电流加速蓄电池循环试验测试分析[J]. 应用化学, 2020, 37(11): 1309-1315. |
[11] | 侯成敏,李娜,董海涛,寇艳萍. 含氟环氧树脂杂化纳米二氧化硅超疏水材料的制备与性能[J]. 应用化学, 2019, 36(7): 798-806. |
[12] | 朱德钦, 生瑜, 郑守扬, 童庆松. 三聚氰胺聚磷酸盐/季戊四醇配比、协效剂组及表面改性对聚丙烯基木塑复合材料的膨胀阻燃影响[J]. 应用化学, 2019, 36(6): 649-657. |
[13] | 刘懿德, 陈嘉炼, 李红周, 杨松伟, 罗富彬, 陈庆华. 协效阻燃聚丙烯的阻燃性能[J]. 应用化学, 2019, 36(10): 1165-1171. |
[14] | 陈南,钟贵林,张国峰. 石墨烯在聚合物阻燃材料中的应用及作用机理[J]. 应用化学, 2018, 35(3): 307-316. |
[15] | 王东升,闻新,李云辉,唐涛. 纳米二氧化硅表面接枝9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物以及对聚甲基丙烯酸甲酯复合材料阻燃性能和透明性的影响[J]. 应用化学, 2018, 35(12): 1427-1433. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||