应用化学 ›› 2023, Vol. 40 ›› Issue (10): 1359-1375.DOI: 10.19894/j.issn.1000-0518.230068
• 综合评述 • 上一篇
收稿日期:
2023-03-20
接受日期:
2023-07-13
出版日期:
2023-10-01
发布日期:
2023-10-13
通讯作者:
李浩,潘建明
基金资助:
Yang PAN, Hui-Ling LU, Hao LI(), Jian-Ming PAN()
Received:
2023-03-20
Accepted:
2023-07-13
Published:
2023-10-01
Online:
2023-10-13
Contact:
Hao LI,Jian-Ming PAN
About author:
pjm@ujs.edu.cnSupported by:
摘要:
近年来,由于对贵金属需求的快速增长而矿产资源有限,供需矛盾日益严重。因此,从富含贵金属的电子废弃物等二次资源中选择性分离回收贵金属至关重要。离子印迹聚合物(Ion-imprinted polymers, IIPs)具有制备简单、空腔固定、结构稳定、环境适应性好、再生能力强和对模板离子具有选择性等优点,在固相萃取、预浓缩、水处理、膜分离和电化学传感器等领域得到了广泛应用。本文综述了近10年来国内外离子印迹技术在贵金属的分离回收领域的最新研究,重点介绍了贵金属离子印迹聚合物的制备、性能及应用,并对贵金属离子印迹技术目前存在的问题和未来发展方向进行了分析和展望。
中图分类号:
潘阳, 鲁惠玲, 李浩, 潘建明. 贵金属离子印迹聚合物的制备及其应用的研究进展[J]. 应用化学, 2023, 40(10): 1359-1375.
Yang PAN, Hui-Ling LU, Hao LI, Jian-Ming PAN. Research Progress in Preparation and Application of Precious Metal Ion-Imprinted Polymers[J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1359-1375.
图2 (A)本体聚合、(B)沉淀聚合和(C)悬浮聚合合成的Pd-IIPs的扫描电子显微镜图像[45]
Fig.2 SEM images of Pd-IIPs synthesized by (A) bulk polymerization, (B) precipitation polymerization and (C) suspension polymerization[45]
Imprinting strategy | Monomer | Solvent | Initiator/Crosslinker | Adsorption capacity/(mg·g-1) | Detection method | Application | Ref. |
---|---|---|---|---|---|---|---|
Surface imprinting | APPA | Methanol | AIBN/EGDMA | 76 | FAAS | Preconcentration | [ |
Surface imprinting | APPA | Methanol | AIBN/EGDMA | 81 | FAAS | Preconcentration | [ |
Surface imprinting | APPA | Methanol | AIBN/EGDMA | 67 | FAAS | Preconcentration | [ |
Sol-gel | VIM | Acetic acid | —/Glutaraldehyde | 810 | ICP-OES | Preconcentration | [ |
Sol-gel | MB | Acetic acid | —/ECH | 370 | AAS | Preconcentration | [ |
Sol-gel | Tu | Acetic acid | —/Glutaraldehyde | 933 | AAS | Preconcentration | [ |
Sol-gel | PTCS | H2O | —/Glyoxal | 140 | AAS | Preconcentration | [ |
Sol-gel | Tu | H2O | —/ECH | 185 | ICP-OES | Preconcentration | [ |
Sol-gel | AcM, HEA | H2O | DMPA/EGDMA | 70 | FAAS | Preconcentration | [ |
Bulk polymerization | 4-VP | Methanol, H2O | AMP/EGDMA | 418 | ICP-OES | Preconcentration | [ |
Bulk polymerization | EDA | DMSO | AMP/EGDMA | 394 | ICP-OES | Preconcentration | [ |
Bulk polymerization | ADT | DMSO | AMP/EGDMA | 190 | ICP-OES | Preconcentration | [ |
Sol-gel | TCTES | HCl | 475 | AAS | Preconcentration | [ | |
Surface imprinting | VIM | Methanol,H2O | AIBN/EGDMA | 185 | FAAS | SPE | [ |
Surface imprinting | VIM | Methanol,H2O | AIBN/EGDMA | 93 | ICP-OES | SPE | [ |
表3 Au-IIPs的制备、性能和应用
Table 3 Preparation, performance and application of Au-IIPs
Imprinting strategy | Monomer | Solvent | Initiator/Crosslinker | Adsorption capacity/(mg·g-1) | Detection method | Application | Ref. |
---|---|---|---|---|---|---|---|
Surface imprinting | APPA | Methanol | AIBN/EGDMA | 76 | FAAS | Preconcentration | [ |
Surface imprinting | APPA | Methanol | AIBN/EGDMA | 81 | FAAS | Preconcentration | [ |
Surface imprinting | APPA | Methanol | AIBN/EGDMA | 67 | FAAS | Preconcentration | [ |
Sol-gel | VIM | Acetic acid | —/Glutaraldehyde | 810 | ICP-OES | Preconcentration | [ |
Sol-gel | MB | Acetic acid | —/ECH | 370 | AAS | Preconcentration | [ |
Sol-gel | Tu | Acetic acid | —/Glutaraldehyde | 933 | AAS | Preconcentration | [ |
Sol-gel | PTCS | H2O | —/Glyoxal | 140 | AAS | Preconcentration | [ |
Sol-gel | Tu | H2O | —/ECH | 185 | ICP-OES | Preconcentration | [ |
Sol-gel | AcM, HEA | H2O | DMPA/EGDMA | 70 | FAAS | Preconcentration | [ |
Bulk polymerization | 4-VP | Methanol, H2O | AMP/EGDMA | 418 | ICP-OES | Preconcentration | [ |
Bulk polymerization | EDA | DMSO | AMP/EGDMA | 394 | ICP-OES | Preconcentration | [ |
Bulk polymerization | ADT | DMSO | AMP/EGDMA | 190 | ICP-OES | Preconcentration | [ |
Sol-gel | TCTES | HCl | 475 | AAS | Preconcentration | [ | |
Surface imprinting | VIM | Methanol,H2O | AIBN/EGDMA | 185 | FAAS | SPE | [ |
Surface imprinting | VIM | Methanol,H2O | AIBN/EGDMA | 93 | ICP-OES | SPE | [ |
Imprinting strategy | Monomer | Solvent | Initiator/Crosslinker | Adsorption capacity/(mg·g-1) | Detection method | Application | Ref. |
---|---|---|---|---|---|---|---|
Sol-gel | CS | Acetic acid | —/Glutaraldehyde | 125 | ICP-OES | Membrane | [ |
Sol-gel | CS | Acetic acid | —/Glutaraldehyde | 2 312 | FAAS | Membrane | [ |
Sol-gel | CS | H2O | —/Glutaraldehyde | 89 | ICP-OES | Preconcentration | [ |
Surface imprinting | Tu | Ethanol | —/Glutaraldehyde | 156 | ICP-OES | Preconcentration | [ |
Surface imprinting | MPTS | Toluene | 91 | FAAS | Preconcentration | [ | |
Precipitation | 4-VP | Ethanol | DMPA/MBA | 73 | ICP-OES | Preconcentration | [ |
Precipitation Precipitation Precipitation | VIM 4-VP VIM | Ethanol Ethanol Ethanol | DMPA/MBA DMPA/MBA DMPA/MBA | 77 26 36 | ICP-OES FAAS FAAS | Preconcentration Preconcentration Preconcentration | [ [ [ |
Sol-gel Surface imprinting Surface imprinting | CS MPTS CS | Acetic acid Methanol,DMF Acetic acid | —/ECH | 155 35 81 | AAS AAS FAAS | Preconcentration Preconcentration Preconcentration | [ [ [ |
Bulk polymerization | 4-VP | Acetonitrile | AIBN/EGDMA | 19 | FAAS | SPE | [ |
Precipitation | 2-PA,2-VP | Methanol | AIBN/EGDMA | 72 | FAAS | SPE | [ |
Surface imprinting | MAA | DMSO | APS/EGDMA | DPSV | ECS | [ | |
Precipitation | ATMIX | Acetonitrile | AIBN/EGDMA | MFS | ECS | [ | |
Precipitation | L | Acetonitrile | AIBN/EGDMA | 2 | FAAS | ECS | [ |
Bulk polymerization | BQSB,4-VP | Acetonitrile | APS/EGDMA | DPSV | ECS | [ |
表4 Ag-IIPs的制备、性能和应用
Table 4 Preparation, performance and application of Ag-IIPs
Imprinting strategy | Monomer | Solvent | Initiator/Crosslinker | Adsorption capacity/(mg·g-1) | Detection method | Application | Ref. |
---|---|---|---|---|---|---|---|
Sol-gel | CS | Acetic acid | —/Glutaraldehyde | 125 | ICP-OES | Membrane | [ |
Sol-gel | CS | Acetic acid | —/Glutaraldehyde | 2 312 | FAAS | Membrane | [ |
Sol-gel | CS | H2O | —/Glutaraldehyde | 89 | ICP-OES | Preconcentration | [ |
Surface imprinting | Tu | Ethanol | —/Glutaraldehyde | 156 | ICP-OES | Preconcentration | [ |
Surface imprinting | MPTS | Toluene | 91 | FAAS | Preconcentration | [ | |
Precipitation | 4-VP | Ethanol | DMPA/MBA | 73 | ICP-OES | Preconcentration | [ |
Precipitation Precipitation Precipitation | VIM 4-VP VIM | Ethanol Ethanol Ethanol | DMPA/MBA DMPA/MBA DMPA/MBA | 77 26 36 | ICP-OES FAAS FAAS | Preconcentration Preconcentration Preconcentration | [ [ [ |
Sol-gel Surface imprinting Surface imprinting | CS MPTS CS | Acetic acid Methanol,DMF Acetic acid | —/ECH | 155 35 81 | AAS AAS FAAS | Preconcentration Preconcentration Preconcentration | [ [ [ |
Bulk polymerization | 4-VP | Acetonitrile | AIBN/EGDMA | 19 | FAAS | SPE | [ |
Precipitation | 2-PA,2-VP | Methanol | AIBN/EGDMA | 72 | FAAS | SPE | [ |
Surface imprinting | MAA | DMSO | APS/EGDMA | DPSV | ECS | [ | |
Precipitation | ATMIX | Acetonitrile | AIBN/EGDMA | MFS | ECS | [ | |
Precipitation | L | Acetonitrile | AIBN/EGDMA | 2 | FAAS | ECS | [ |
Bulk polymerization | BQSB,4-VP | Acetonitrile | APS/EGDMA | DPSV | ECS | [ |
Imprinting strategy | Monomer | Solvent | Initiator/crosslinker | Adsorption capacity/(mg·g-1) | Detection method | Application | Ref. |
---|---|---|---|---|---|---|---|
Sol-gel | CS | DMSO | —/ECH | 653 | AAS | Preconcentration | [ |
Sol-gel | CS | Acetic acid | —/ECH | 326 | ICP-OES | Preconcentration | [ |
Surface imprinting | NB, CS | Acetic acid | —/Glyoxal | 275 | ICP-OES | Preconcentration | [ |
Bulk polymerization | APDC, DMG | Ethanol | AIBN/DVB | ETAAS | Preconcentration | [ | |
Bulk polymerization | 4-VP, 2-ABN | Toluene | AIBN/DVB | 39 | AAS | Preconcentration | [ |
Precipitation | 4-VP, 8-AQ | 2-Methoxyethanol | AIBN/EGDMA | 60 | ICP-OES | Preconcentration | [ |
Surface imprinting | AHTB | Methanol | AIBN/EGDMA | 60 | AAS | Preconcentration | [ |
Precipitation Precipitation Precipitation | ATU ATU 4-VP | Methanol DMF H2O Methanol | AIBN/EGDMA AIBN/EGDMA AIBN/EGDMA | 46 83 | AAS AAS DPSV | Preconcentration Preconcentration ECS | [ [ [ |
表5 Pd-IIPs的制备、性能和应用
Table 5 Preparation, performance and application of Pd-IIPs
Imprinting strategy | Monomer | Solvent | Initiator/crosslinker | Adsorption capacity/(mg·g-1) | Detection method | Application | Ref. |
---|---|---|---|---|---|---|---|
Sol-gel | CS | DMSO | —/ECH | 653 | AAS | Preconcentration | [ |
Sol-gel | CS | Acetic acid | —/ECH | 326 | ICP-OES | Preconcentration | [ |
Surface imprinting | NB, CS | Acetic acid | —/Glyoxal | 275 | ICP-OES | Preconcentration | [ |
Bulk polymerization | APDC, DMG | Ethanol | AIBN/DVB | ETAAS | Preconcentration | [ | |
Bulk polymerization | 4-VP, 2-ABN | Toluene | AIBN/DVB | 39 | AAS | Preconcentration | [ |
Precipitation | 4-VP, 8-AQ | 2-Methoxyethanol | AIBN/EGDMA | 60 | ICP-OES | Preconcentration | [ |
Surface imprinting | AHTB | Methanol | AIBN/EGDMA | 60 | AAS | Preconcentration | [ |
Precipitation Precipitation Precipitation | ATU ATU 4-VP | Methanol DMF H2O Methanol | AIBN/EGDMA AIBN/EGDMA AIBN/EGDMA | 46 83 | AAS AAS DPSV | Preconcentration Preconcentration ECS | [ [ [ |
1 | CHEN Y, QIAO Q Y, CAO J Z, et al. Precious metal recovery[J]. Joule, 2021, 5(12): 3097-3115. |
2 | CHANG Z Y, ZENG L, SUN C B, et al. Adsorptive recovery of precious metals from aqueous solution using nanomaterials-a critical review[J]. Coord Chem Rev, 2021, 445: 214072. |
3 | HONG Y, THIRION D, SUBRAMANIAN S, et al. Precious metal recovery from electronic waste by a porous porphyrin polymer[J]. Proc Natl Acad Sci USA, 2020, 117(28): 16174-16180. |
4 | DING Y J, ZHENG H D, ZHANG S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection[J]. Resour Conserv Recycl, 2020, 155:104644. |
5 | SONG K S, ASHIROV T, TALAPANENI S N, et al. Porous polyisothiocyanurates for selective palladium recovery and heterogeneous catalysis[J]. Chem, 2022, 8(7): 2043-2059. |
6 | NGUYEN T S, HONG Y, DOGAN N A, et al. Gold recovery from e-waste by porous porphyrin-phenazine network polymers[J]. Chem Mater, 2020, 32(12): 5343-5349. |
7 | CHEN Z X, WANG D X, FENG S Y, et al. An imidazole thione-modified polyhedral oligomeric silsesquioxane for selective detection and adsorptive recovery of Au(Ⅲ) from aqueous solutions[J]. ACS Appl Mater Interfaces, 2021, 13(20): 23592-23605. |
8 | 曹燕, 邓婷婷, 江卓珊, 等. 唤醒沉睡的宝藏:中国废弃电子产品循环经济潜力报告[R]. 中国电子装备技术开发协会, 2019. |
CAO Y, DENG T T, JIANG Z S, et al. Awakening sleeping treasures: a report on the circular economy potential of wasted electronics in China[R]. China Association of Electronics for Technology Development, 2019. | |
9 | LI H, WU F, PAN Y, et al. Selective capture of palladium(Ⅱ) from highly acidic solution by proline-valinol amide functionalized silica nanoparticles[J]. Colloids Surf A, 2022: 129374. |
10 | LI H, PAN Y, WU F, et al. Turning waste into wealth: efficient and rapid capture of gold from electronic waste with thiourea functionalized magnetic core stirring rods adsorbent and their application for heterogeneous catalysis[J]. Green Chem, 2022, 24: 7592-7601. |
11 | WU F, LI H, PAN Y, et al. Bioinspired construction of magnetic nano stirring rods with radially aligned dual mesopores and intrinsic rapid adsorption of palladium[J]. J Hazard Mater, 2023, 441: 129917. |
12 | WU F, LI H, PAN Y, et al. Sustainable utilization of palladium from industrial catalytic waste by a smart magnetic nano stirring robot[J]. Sep Purif Technol, 2023: 123536. |
13 | CHEN L X, WANG X Y, LU W H, et al. Molecular imprinting: perspectives and applications[J]. Chem Soc Rev, 2016, 45(8): 2137-2211. |
14 | NISHIDE H, DEGUCHI J, TSUCHIDA E. Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template[J]. Chem Lett, 1976, 5(2): 169-174. |
15 | BUDNICKA M, SOBIECH M, KOLMAS J, et al. Frontiers in ion imprinting of alkali- and alkaline-earth metal ions-recent advancements and application to environmental, food and biomedical analysis[J]. TrAC Trends Anal Chem, 2022: 116711. |
16 | WANG Y Y, XU J C, YANG D Y, et al. Calix[4]arenes functionalized dual-imprinted mesoporous film for the simultaneous selective recovery of lithium and rubidium[J]. Appl Organomet Chem, 2018, 32(10): e4511. |
17 | CHEN L, WANG Y T, DAI J D, et al. Ligand confinement and pure aqueous medium synthesis of novel ion imprinted membranes for advanced rare earth separation[J]. Appl Surf Sci, 2022, 588: 152862. |
18 | ZHENG X D, LIU E L, ZHANG F S, et al. Efficient adsorption and separation of dysprosium from NdFeB magnets in an acidic system by ion imprinted mesoporous silica sealed in a dialysis bag[J]. Green Chem, 2016, 18(18): 5031-5040. |
19 | WU Y L, LIN R X, MA F G, et al. Three-dimensional macroporous wood-based selective separation membranes decorated with well-designed Nd(Ⅲ)-imprinted domains: a high-efficiency recovery system for rare earth element[J]. J Colloid Interface Sci, 2021, 587: 703-714. |
20 | DING C X, DENG Y C, MERCHANT A, et al. Insights into surface ion-imprinted materials for heavy metal ion treatment: challenges and opportunities[J]. Sep Purif Rev, 2023, 52(2): 123-134. |
21 | HANDE P E, SAMUI A B, KULKARNI P S. Highly selective monitoring of metals by using ion-imprinted polymers[J]. Environ Sci Pollut Res, 2015, 22(10): 7375-7404. |
22 | 徐峰, 张坤, 阴凤琴, 等. 阴离子印迹聚合物的制备及其应用研究进展[J]. 应用化学, 2021, 38(2): 123-135. |
XU F, ZHANG K, YIN F Q, et al. Research progress in preparation and application of anion imprinted polymers[J]. Chin J Appl Chem, 2021, 38(2): 123-135. | |
23 | 肖海梅, 蔡蕾, 张朝晖, 等. 磁性氧化石墨烯/MIL-101(Cr)表面金属离子印迹聚合物制备及其对Cu(Ⅱ)和Pb(Ⅱ)选择性吸附[J]. 应用化学, 2020, 37(9): 1076-1086. |
XIAO H M, CAI L, ZHANG Z H, et al. Preparation of ion-imprinted polymers based on magnetic graphene oxide/MIL-101(Cr) and selective adsorption of Cu(Ⅱ) and Pb(Ⅱ)[J]. Chin J Appl Chem, 2020, 37(9): 1076-1086. | |
24 | SALA A, BRISSET H, MARGAILLAN A, et al. Electrochemical sensors modified with ion-imprinted polymers for metal ion detection[J]. TrAC Trends Anal Chem, 2022, 148: 116536. |
25 | 黎先财, 田明磊, 程玉雯, 等. 基于MCM-41分子筛表面的镱离子印迹聚合物的制备及其性能[J]. 应用化学, 2019, 36(2): 203-211. |
LI X C, TIAN M L, CHENG Y W, et al. Preparation and characterization of Yb ion-imprinted polymers based on MCM-41 molecular sieve surface[J]. Chin J Appl Chem, 2019, 36(2): 203-211. | |
26 | FU J Q, CHEN L X, LI J H, et al. Current status and challenges of ion imprinting[J]. J Mater Chem A, 2015, 3(26): 13598-13627. |
27 | AHMADI S J, NOORI K O, SHIRVANI A S. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO 2 2 + ) ions[J]. J Hazard Mater, 2010, 175(1/3): 193-197. |
28 | RAMMIKA M, DARKO G, TORTO N. Optimal synthesis of a Ni(Ⅱ)-dimethylglyoxime ion-imprinted polymer for the enrichment of Ni(Ⅱ) ions in water, soil and mine tailing samples[J]. Water Sa, 2012, 38(2): 261-268. |
29 | ALIZADEH T. An imprinted polymer for removal of Cd2+ from water samples: optimization of adsorption and recovery steps by experimental design[J]. Chin J Polym Sci, 2011, 29: 658-669. |
30 | BRANGER C, MEOUCHE W, MARGAILLAN A. Recent advances on ion-imprinted polymers[J]. React Funct Polym, 2013, 73(6): 859-875. |
31 | DAM A H, KIM D. Metal ion-imprinted polymer microspheres derived from copper methacrylate for selective separation of heavy metal ions[J]. J Appl Polym Sci, 2008, 108(1): 14-24. |
32 | BELTRAN A, MARCÉ R M, CORMACK P A G, et al. Synthesis by precipitation polymerisation of molecularly imprinted polymer microspheres for the selective extraction of carbamazepine and oxcarbazepine from human urine[J]. J Chromatogr A, 2009, 1216(12): 2248-2253. |
33 | GLADIS J M, RAO T P. Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration/separation of traces of uranium[J]. Microchim Acta, 2004, 146(3): 251-258. |
34 | LIU Y Q, HOSHINA K, HAGINAKA J. Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization[J]. Talanta, 2010, 80(5): 1713-1718. |
35 | CHEN L, DAI J, HU B, et al. Recent progresses on the adsorption and separation of ions by imprinting routes[J]. Sep Purif Rev, 2020, 49(4): 265-293. |
36 | NICHOLLS I A, KARLSSON B C G, OLSSON G D, et al. Computational strategies for the design and study of molecularly imprinted materials[J]. Ind Eng Chem Res, 2013, 52(39): 13900-13909. |
37 | 朱彩艳, 马慧敏, 张强, 等. 离子印迹聚合物功能单体的研究进展[J]. 化工进展, 2014, 33(11): 3013-3020. |
ZHU C Y, MA H M, ZHANG Q, et al. Research progress on functional monomers of ion-imprinted polymers[J]. Chem Ind Eng Prog, 2014, 33(11): 3013-3020. | |
38 | ZHOU X Y, WANG B Q, WANG R. Insights into ion-imprinted materials for the recovery of metal ions: preparation, evaluation and application[J]. Sep Purif Technol, 2022: 121469. |
39 | 叶明富, 曹云钟, 丁仁浩, 等. 软硬酸碱理论及其应用[J]. 化工时刊, 2019, 33(2): 28-31. |
YE M F, CAO Y Z, DING R H, et al. Soft hard acid-base theory and its application[J]. Chem Ind Times, 2019, 33(2): 28-31. | |
40 | BIJU V M, GLADIS J M, RAO T P. Ion imprinted polymer particles: synthesis, characterization and dysprosium ion uptake properties suitable for analytical applications[J]. Anal Chim Acta, 2003, 478(1): 43-51. |
41 | ZAMBRZYCKA S E, LEŚNIEWSKA B, GODLEWSKA Ż B. Preparation and application of ion-imprinted polymer sorbents in separation process of trace metals[J]. Compr Anal Chem, 2019, 86: 261-293. |
42 | LOFGREEN J E, OZIN G A. Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica[J]. Chem Soc Rev, 2014, 43(3): 911-933. |
43 | CHEN L X, XU S F, LI J H. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications[J]. Chem Soc Rev, 2011, 40(5): 2922-2942. |
44 | SHAKERIAN F, KIM K H, KWON E, et al. Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions[J]. TrAC Trends Anal Chem, 2016, 83: 55-69. |
45 | DANIEL S, RAO P P, RAO T P. Investigation of different polymerization methods on the analytical performance of palladium(Ⅱ) ion imprinted polymer materials[J]. Anal Chim Acta, 2005, 536(1/2): 197-206. |
46 | BAI F, YANG X L, HUANG W Q. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation- precipitation polymerization[J]. Macromolecules, 2004, 37(26): 9746-9752. |
47 | LIU H, JIN P, ZHU F, et al. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction[J]. TrAC Trends Anal Chem, 2021, 134: 116132. |
48 | LU J, QIN Y, WU Y, et al. Recent advances in ion-imprinted membranes: separation and detection via ion-selective recognition[J]. Environ Sci: Water Res Technol, 2019, 5(10): 1626-1653. |
49 | GUO W H, YANG F, ZHAO Z G, et al. Cellulose-based ionic liquids as an adsorbent for high selective recovery of gold[J]. Miner Eng, 2018, 125: 271-278. |
50 | EBRAHIMZADEH H, MOAZZEN E, AMINI M M, et al. Novel magnetic ion imprinted polymer as a highly selective sorbent for extraction of gold ions in aqueous samples[J]. Anal Methods, 2012, 4(10): 3232-3237. |
51 | MOAZZEN E, EBRAHIMZADEH H, AMINI M M, et al. A high selective ion-imprinted polymer grafted on a novel nanoporous material for efficient gold extraction[J]. J Sep Sci, 2013, 36(11): 1826-1833. |
52 | EBRAHIMZADEH H, MOAZZEN E, AMINI M M, et al. Novel ion imprinted polymer coated multiwalled carbon nanotubes as a high selective sorbent for determination of gold ions in environmental samples[J]. Chem Eng J, 2013, 215: 315-321. |
53 | AHAMED M E H, MBIANDA X Y, MULABA-BAFUBIANDI A F, et al. Selective extraction of gold(Ⅲ) from metal chloride mixtures using ethylenediamine N-(2-(1-imidazolyl) ethyl) chitosan ion-imprinted polymer[J]. Hydrometallurgy, 2013, 140: 1-13. |
54 | MONIER M, ABDEL-LATIF D A. Fabrication of Au(Ⅲ) ion-imprinted polymer based on thiol-modified chitosan[J]. Int J Biol Macromol, 2017, 105: 777-787. |
55 | GUO J K, FAN X H, LI Y P, et al. Mechanism of selective gold adsorption on ion-imprinted chitosan resin modified by thiourea[J]. J Hazard Mater, 2021, 415: 125617. |
56 | MONIER M, AKL M A, ALI W. Preparation and characterization of selective phenyl thiosemicarbazide modified Au(Ⅲ) ion-imprinted cellulosic cotton fibers[J]. J Appl Polym Sci, 2014, 131(18): 40769. |
57 | GAO X P, LIU J, LI M Y, et al. Mechanistic study of selective adsorption and reduction of Au(Ⅲ) to gold nanoparticles by ion-imprinted porous alginate microspheres[J]. Chem Eng J, 2020, 385: 123897. |
58 | FIRLAK M, ÇUBUK S, YETIMOĞLU E K, et al. Recovery of Au(Ⅲ) ions by Au(Ⅲ)-imprinted hydrogel[J]. Chem Pap, 2016, 70(6): 757-768. |
59 | AHAMED M E H, MULABA B A F, MARJANOVIC L, et al. Recovery of gold from mining solutions using Au(Ⅲ)-imprinted polymeric resins with pyridine, ethylenediamine and aminothiophosphate functionalities[J]. Miner Process Extr Metall, 2019, 128(4): 221-238. |
60 | DOBRZYŃSKA J, DĄBROWSKA M, OLCHOWSKI R, et al. An ion-imprinted thiocyanato-functionalized mesoporous silica for preconcentration of gold(Ⅲ) prior to its quantitation by slurry sampling graphite furnace AAS[J]. Microchim Acta, 2018, 185(12): 1-9. |
61 | ZHAO B S, HE M, CHEN B B, et al. Poly(1-vinylimidazole) functionalized magnetic ion imprinted polymer for fast and selective extraction of trace gold in geological, environmental and biological samples followed by graphite furnace atomic absorption spectrometry detection[J]. Spectrochim Acta Part B, 2018, 143: 32-41. |
62 | HUA Y, LI J Y, MIN H, et al. Hybrid monolith assisted magnetic ion-imprinted polymer extraction coupled with ICP-MS for determination of trace Au(Ⅲ) in environmental and mineral samples[J]. Microchem J, 2020, 158: 105210. |
63 | HOSAM A, SHAWKY. Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(Ⅰ)[J]. J Appl Polym Sci, 2009, 114(5): 2608-2615. |
64 | WANG X W, ZHANG L, MA C L, et al. Enrichment and separation of silver from waste solutions by metal ion imprinted membrane[J]. Hydrometallurgy, 2009, 100(1/2): 82-86. |
65 | ZHANG M, HELLEUR R, ZHANG Y. Ion-imprinted chitosan gel beads for selective adsorption of Ag+ from aqueous solutions[J]. Carbohydr Polym, 2015, 130: 206-212. |
66 | ZHANG M, ZHANG Y, HELLEUR R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea-glutaraldehyde[J]. Chem Eng J, 2015, 264: 56-65. |
67 | XIANG G Q, MA Y L, YANG J F, et al. A surface ion imprinted magnetic silica sorbent for the separation and determination of leaching silver in antibacterial food contact products[J]. Can J Chem, 2015, 93(6): 621-625. |
68 | AHAMED M E H, MBIANDA X Y, MULABA-BAFUBIANDI A F, et al. Ion imprinted polymers for the selective extraction of silver(Ⅰ) ions in aqueous media: kinetic modeling and isotherm studies[J]. React Funct Polym, 2013, 73(3): 474-483. |
69 | KYZAS G Z, BIKIARIS D N. Characterization of binding properties of silver ion-imprinted polymers with equilibrium and kinetic models[J]. J Mol Liq, 2015, 212: 133-141. |
70 | HUO H Y, SU H J, TAN T W. The influence of trace TiO2 on adsorption of Ag+-imprinted adsorbents made from chitosan and mycelium[J]. Biotechnol Bioprocess Eng, 2008, 13(1): 77-83. |
71 | YIN X C, LONG J, XI Y, et al. Recovery of silver from wastewater using a new magnetic photocatalytic ion-imprinted polymer[J]. ACS Sustainable Chem Eng, 2017, 5(3): 2090-2097. |
72 | HOU H B, YU D M, HU G H. Preparation and properties of ion-imprinted hollow particles for the selective adsorption of silver ions[J]. Langmuir, 2015, 31(4): 1376-1384. |
73 | DADFARNIA S, SHABANI A M H, KAZEMI E, et al. Synthesis of nano-pore size Ag(Ⅰ)-imprinted polymer for the extraction and preconcentration of silver ions followed by its determination with flame atomic absorption spectrometry and spectrophotometry using localized surface plasmon resonance peak of silver nanoparticles[J]. J Braz Chem Soc, 2015, 26: 1180-1190. |
74 | BEHBAHANI M, OMIDI F, KAKAVANDI M G, et al. Selective and sensitive determination of silver ions at trace levels based on ultrasonic-assisted dispersive solid-phase extraction using ion-imprinted polymer nanoparticles[J]. Appl Organomet Chem, 2017, 31(11): e3758. |
75 | GHANEI-MOTLAGH M, TAHER M A. Magnetic silver(Ⅰ) ion-imprinted polymeric nanoparticles on a carbon paste electrode for voltammetric determination of silver(Ⅰ)[J]. Microchim Acta, 2017, 184(6): 1691-1699. |
76 | SUN H, LAI J P, LIN D S, et al. A novel fluorescent multi-functional monomer for preparation of silver ion-imprinted fluorescent on-off chemosensor[J]. Sens Actuators B: Chem, 2016, 224: 485-491. |
77 | SHAMSIPUR M, HASHEMI B, DEHDASHTIAN S, et al. Silver-ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1,10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors[J]. Anal Chim Acta, 2014, 852: 223-235. |
78 | ZHIANI R, GHANEI-MOTLAG M, RAZAVIPANAH I. Selective voltammetric sensor for nanomolar detection of silver ions using carbon paste electrode modified with novel nanosized Ag(Ⅰ)-imprinted polymer[J]. J Mol Liq, 2016, 219: 554-560. |
79 | BABA Y, OHE K, OHSHIMA T, et al. Preparation of palladium(Ⅱ)-imprinted chitosan derivative and its adsorption properties of precious metals[J]. J Ion Exch, 2007, 18(4): 226-231. |
80 | BABA Y, OSHIMA T, KANEMARU S. A quantitative consideration for template effect of palladium(Ⅱ) using N-[pyridylmethyl] chitosan[J]. Solvent Extr Ion Exch, 2011, 29(3): 509-517. |
81 | LIN S, WEI W, WU X H, et al. Selective recovery of Pd(Ⅱ) from extremely acidic solution using ion-imprinted chitosan fiber: adsorption performance and mechanisms[J]. J Hazard Mater, 2015, 299: 10-17. |
82 | MONIER M, ABDEL-LATIF D A, ABOU EL-REASH Y G. Ion-imprinted modified chitosan resin for selective removal of Pd(Ⅱ) ions[J]. J Colloid Interface Sci, 2016, 469: 344-354. |
83 | ODLEWSKA-ŻYŁKIEWICZ B, LEŚNIEWSKA B, WILCZEWSKA A Z. Evaluation of ion imprinted polymers for the solid phase extraction and electrothermal atomic absorption spectrometric determination of palladium in environmental samples[J]. Int J Environ Anal Chem, 2013, 93(5): 483-498. |
84 | JIANG Y, KIM D. Synthesis and selective adsorption behavior of Pd(Ⅱ)-imprinted porous polymer particles[J]. Chem Eng J, 2013, 232: 503-509. |
85 | SHAFIZADEH F, TAGHIZADEH M, HASSANPOUR S. Preparation of a novel magnetic Pd(Ⅱ) ion-imprinted polymer for the fast and selective adsorption of palladium ions from aqueous solutions[J]. Environ Sci Pollut Res, 2019, 26(18): 18493-18508. |
86 | GAO Y, ZHOU R Y, YAO L, et al. Selective capture of Pd(Ⅱ) from aqueous media by ion-imprinted dendritic mesoporous silica nanoparticles and re-utilization of the spent adsorbent for Suzuki reaction in water[J]. J Hazard Mater, 2022, 436: 129249. |
87 | ZHANG K, CHANG Z W, LUO X B, et al. Specific spatial transfer PdCl 4 2 - to [X-Pd-Y] by strong coordination interaction in a 3D palladium ion-imprinted polymer with footprint cavity[J]. Chem Eng J, 2021, 405: 126613. |
88 | PAN G Q, MA Y, ZHANG Y, et al. Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultrathin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization[J]. Soft Matter, 2011, 7(18): 8428-8439. |
89 | YU H Y, SHAO P H, FANG L L, et al. Palladium ion-imprinted polymers with PHEMA polymer brushes: role of grafting polymerization degree in anti-interference[J]. Chem Eng J, 2019, 359: 176-185. |
90 | LAI W Q, ZHANG K, SHAO P H, et al. Optimization of adsorption configuration by DFT calculation for design of adsorbent: a case study of palladium ion-imprinted polymers[J]. J Hazard Mater, 2019, 379: 120791. |
91 | BOJDI M K, BEHBAHANI M, SAHRAGARD A, et al. A palladium imprinted polymer for highly selective and sensitive electrochemical determination of ultra-trace of palladium ions[J]. Electrochim Acta, 2014, 149: 108-116. |
92 | LEŚNIEWSKA B, KOSIŃSKA M, GODLEWSKA-ŻYŁKIEWICZ B, et al. Selective solid phase extraction of platinum on an ion imprinted polymers for its electrothermal atomic absorption spectrometric determination in environmental samples[J]. Microchim Acta, 2011, 175(3): 273-282. |
93 | JIANG Y, KIM D. Synthesis and selective sorption behavior of Pt(IV) ion-imprinted polymer particles[J]. Ind Eng Chem Res, 2014, 53(34): 13340-13347. |
94 | DOBRZYŃSKA J, DĄBROWSKA M, OLCHOWSKI R, et al. Development of a method for removal of platinum from hospital wastewater by novel ion-imprinted mesoporous organosilica[J]. J Environ Chem Eng, 2021, 9(4): 105302. |
95 | BAI H P, WANG C Q, ZHANG K N, et al. A novel ion-imprinted electrode prepared by in situ polymerization for detection of platinum[J]. RSC Adv, 2014, 4(103): 58916-58923. |
96 | ZENG J X, LV C Q, LIU G Q, et al. A novel ion-imprinted membrane induced by amphiphilic block copolymer for selective separation of Pt(Ⅳ) from aqueous solutions[J]. J Membr Sci, 2019, 572: 428-441. |
97 | ZHENG H, YANG S L, WANG J C, et al. Highly selective determination of rhodium(Ⅲ) using silica gel surface-imprinted solid-phase extraction[J]. Int J Environ Anal Chem, 2011, 91(11): 1013-1023. |
98 | YANG B, ZHANG T, TAN W X, et al. Determination of rhodium by resonance light-scattering technique coupled with solid phase extraction using Rh(Ⅲ) ion-imprinted polymers as sorbent[J]. Talanta, 2013, 105: 124-130. |
99 | BAI H P, XIONG C Y, WANG C Q, et al. Electrochemical sensor based on Rh(Ⅲ) ion-imprinted polymer as a new modifying agent for rhodium determination[J]. J Nanosci Nanotechnol, 2018, 18(5): 3577-3584. |
100 | ZAMBRZYCKA E, ROSZKO D, LEŚNIEWSKA B, et al. Studies of ion-imprinted polymers for solid-phase extraction of ruthenium from environmental samples before its determination by electrothermal atomic absorption spectrometry[J]. Spectrochim Acta Part B, 2011, 66(7): 508-516. |
101 | GODLEWSKA-ŻYŁKIEWICZ B, ZAMBRZYCKA E, LEŚNIEWSKA B, et al. Separation of ruthenium from environmental samples on polymeric sorbent based on imprinted Ru(Ⅲ)-allyl acetoacetate complex[J]. Talanta, 2012, 89: 352-359. |
102 | ZAMBRZYCKA E, KIEDYSZ U, WILCZEWSKA A Z, et al. A novel ion imprinted polymer as a highly selective sorbent for separation of ruthenium ions from environmental samples[J]. Anal Methods, 2013, 5(12): 3096-3105. |
103 | ZAMBRZYCKA E, GODLEWSKA-ŻYŁKIEWICZ B. A new ion imprinted polymer based on Ru(Ⅲ)-thiobarbituric acid complex for solid phase extraction of ruthenium(Ⅲ) prior to its determination by ETAAS[J]. Microchim Acta, 2014, 181(9): 1019-1027. |
104 | MONIER M, ABDEL-LATIF D A, YOUSSEF I. Preparation of ruthenium(Ⅲ) ion-imprinted beads based on 2-pyridylthiourea modified chitosan[J]. J Colloid Interface Sci, 2018, 513: 266-278. |
105 | ZENG J X, ZHANG Z, DONG Z H, et al. Fabrication and characterization of an ion-imprinted membrane via blending poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) with polyvinylidene fluoride for selective adsorption of Ru(Ⅲ)[J]. React Funct Polym, 2017, 115: 1-9. |
106 | TAGHIOF M, HOVEIDI H, PAKIZVAND N, et al. The pre-concentration and determination of iridium and palladium in environmental water by imprinted polymer-based method[J]. Int J Environ Sci Technol, 2013, 10(5): 1091-1102. |
[1] | 邢思阳, 于飞, 马杰. 电容去离子过渡金属基电极设计及应用研究进展[J]. 应用化学, 2023, 40(9): 1215-1232. |
[2] | 臧志飞, 梁杰, 习本军, 彭春雪, 刘渊, 王晨晔, 王朵. 草甘膦废液处理及资源化利用研究进展[J]. 应用化学, 2023, 40(9): 1233-1244. |
[3] | 王梦瑶, 高美珍, 石琪, 董晋湘. 基于甲苯模板合成的ZIF-93及其对1,3-丙二醇和2,3-丁二醇的吸附分离性能[J]. 应用化学, 2023, 40(9): 1302-1311. |
[4] | 罗二桂, 唐涛, 王艺, 张俊明, 常宇虹, 胡天军, 贾建峰. 两电子氧还原制备过氧化氢:贵金属催化剂的几何与电子结构调控的研究进展[J]. 应用化学, 2023, 40(8): 1063-1076. |
[5] | 董以宁, 李赫, 宫雪, 韩策, 宋平, 徐维林. 非Pt基催化剂在质子交换膜燃料电池阴极氧还原反应中的研究进展[J]. 应用化学, 2023, 40(8): 1077-1093. |
[6] | 武彦彬, 李利珍, 李俊华, 许志锋. 基于MoS2纳米花的表面离子印迹材料的制备及性能[J]. 应用化学, 2023, 40(7): 1024-1033. |
[7] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[8] | 伍凡, 田贺元, 刘鹏, 孙立伟, 张一波, 杨向光. 高氧空位尖晶石型锰基催化剂用于低温NH3-SCR反应[J]. 应用化学, 2023, 40(5): 697-707. |
[9] | 郝晨丽, 丁庆伟, 贾世昌, 毛泱博, 王松柏, 马骏. 硫辛酸修饰钛酸纳米管吸附亚甲基蓝的性能[J]. 应用化学, 2023, 40(5): 749-757. |
[10] | 方愈, 况王强, 邝圣庭, 廖伍平. Cextrant 230从低品位铜矿H2SO4-NaCl浸出液中选择性提取回收铜[J]. 应用化学, 2023, 40(5): 758-768. |
[11] | 赵金丽, 于宗仁, 苏伯民. 墓葬壁画中蛋清胶结材料的热裂解-气质联用分析[J]. 应用化学, 2023, 40(4): 562-570. |
[12] | 熊波, 黎泰华, 周武平, 刘长宇, 徐晓龙. 一步热聚合法制备Cu2O/CuO-g-C3N4吸附剂及其对甲基橙吸附的性能[J]. 应用化学, 2023, 40(3): 420-429. |
[13] | 张琴, 刘文彬, 樊利娇, 谢宇铭, 黄国林. 功能化介孔二氧化硅的制备及其吸附分离水中铀的研究进展[J]. 应用化学, 2023, 40(2): 169-187. |
[14] | 高静霞, 王子安, 张连明, 李建平. 大环化合物在高选择性分子印迹识别体系中的研究进展[J]. 应用化学, 2023, 40(1): 24-39. |
[15] | 林锦, 王芳珠, 吕灵灵. 工业原料制备大孔拟薄水铝石及在异佛尔酮选择性加氢中的应用[J]. 应用化学, 2023, 40(1): 79-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||