应用化学 ›› 2023, Vol. 40 ›› Issue (9): 1215-1232.DOI: 10.19894/j.issn.1000-0518.230142
• 综合评述 • 下一篇
收稿日期:
2023-05-15
接受日期:
2023-06-27
出版日期:
2023-09-01
发布日期:
2023-09-14
通讯作者:
马杰
基金资助:
Si-Yang XING1,2, Fei YU3, Jie MA1,2()
Received:
2023-05-15
Accepted:
2023-06-27
Published:
2023-09-01
Online:
2023-09-14
Contact:
Jie MA
About author:
jma@tongji.edu.cnSupported by:
摘要:
电容去离子(Capacitive deionization, CDI)作为一种新兴的水淡化和离子分离方法,由于其离子选择性高、水回收率高和能耗低等优点受到广泛关注。与传统的基于碳电极的CDI相比,新兴的法拉第电极通过离子捕获的法拉第反应,提供了使得CDI的脱盐性能大幅提升的独特机会。而过渡金属基电极由于其高度可逆的法拉第响应,相对较高的导电性以及出色的理论赝电容值等优势,在CDI电极设计领域受到广泛关注。本文系统地归纳和梳理了过渡金属基电极在CDI应用中的材料分类,总结了针对其本征缺陷所进行改性工程,主要包括导电材料耦合、功能结构工程和缺陷工程等,并对其在海水淡化中的性能进行了总结; 此外,从离子选择性分离、金属离子去除和营养元素回收等方面介绍了过渡金属基电极在CDI中的特定应用。最后,概述了剩余的挑战和研究方向,为未来的过渡金属基电极的开发与研究提供指导。
中图分类号:
邢思阳, 于飞, 马杰. 电容去离子过渡金属基电极设计及应用研究进展[J]. 应用化学, 2023, 40(9): 1215-1232.
Si-Yang XING, Fei YU, Jie MA. Research Progress in Design and Application of Transition Metal Electrode for Capacitive Deionization[J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1215-1232.
图1 锰氧化物的晶体结构示意图:(a) β-MnO2,(b) γ-MnO2,(c) α-MnO2,(d) δ-MnO2,(e) λ-MnO2[41];(f) 具有不同 M2+/M3+摩尔比的碳酸盐插层LDH理想结构[42]
Fig.1 The crystal structure of manganese oxides: (a) β-MnO2,(b) γ-MnO2,(c) α-MnO2,(d) δ-MnO2,(e) λ-MnO2[41]. (f) The idealized structure of carbonate-intercalated LDHs with different M2+/M3+ molar ratios[42]
图2 (a) MAX相刻蚀以及Ti3C2-MXene的Na+嵌入/脱出示意图[66]; (b) MXene在1 mol/L NaCl中的阳极和阴极在不同电池电压下的电极电位和 (c) 在5 mV/s下的循环伏安曲线图[68]; (d) AFM图像和沿箭头的多孔Ti3C2T x结构的厚度曲线及(e)多孔Ti3C2T x 重新堆叠的Ti3C2T x 和活性炭电极在500 mg/L NaCl溶液中的电吸附率[69]
Fig.2 (a) Schematic diagram of MAX phase etching and Na+ (de) intercalation of Ti3C2-MXene[66]. (b) Electrode potential at different cell voltages and (c) cyclic voltammograms at 5 mV/s for anode and cathode of MXene in 1 mol/L NaCl[68]. (d) AFM image and thickness profiles along the arrow of porous Ti3C2T x architectures and (e) electroadsorption rate of porous Ti3C2T x, restacked Ti3C2T x, and activated carbon electrodes in 500 mg/L NaCl[69]
图3 MoS2的(a)2H相和(b)1T相的晶体结构[81]。(c) MoS2/CNT电极在5 mV/s的循环伏安曲线[73]以及(d)在1 mol/L NaCl 溶液中用于正极化的电化学原位拉曼图[82]
Fig.3 Crystal structures of MoS2 with (a) 2H phase and (b) 1T phase[81]. (c) Cyclic voltammetric curve of the MoS2/CNT electrode at 5 mV/s[73] and (d) electrochemical in situ Raman diagram for anodic polarization in 1 mol/L NaCl solution[82]
图4 (a) Ti3C2T x /Ag电极的TEM图[88]; (b) CoFe-LDH/Ti3C2T x 复合电极的TEM图[55]; (c) Ti3C2Tx/PAN的TEM和(d) Ti3C2T x /PAN-14的SEM图像[89]; (e) TiO2/Ti3C2的SEM和(f) TEM图像[9]; (g)不同电极的XRD图案[95]
Fig.4 (a) Transmission electron micrographs of Ti3C2T x /Ag[88]; (b) TEM of CoFe-LDH/Ti3C2T x[55]; (c) TEM of Ti3C2T x /PAN and (d) SEM image of Ti3C2T x /PAN-14[89]; (e) SEM and (f) TEM images of TiO2/Ti3C2[9]; (g) XRD patterns of different electrodes[95]
表1 不同改性工程下过渡金属基电极的CDI脱盐性能对比
Table 1 Comparison of CDI performance of transition metal electrodes under different modification engineering
图6 (a) 电池单元电压(ΔE)与设备中电荷(q)的循环形状,显示所需的能量[119]。(b) 锂浓缩室中锂和其他阳离子的浓度变化[122]。(c) 铬主要成分的E-pH图及(d) 通过DFT计算的二茂铁和一系列氧离子之间结合能的比较[123]
Fig.6 (a) Shape of a cycle of a battery cell volta (ΔE) vs. charge (q) in the device, showing the required energy[119]. (b) Changes in the concentration of lithium and other cations in the lithium concentration chamber[122]. (c) The E-pH diagram for chromium speciation predominance and (d) comparison of binding energies between ferrocene and a series of oxygen ions calculated by DFT[123]
图7 (a) 接触时间对AC和纯Mg-M3+ LDH的磷酸盐吸附的影响及(b) 离子强度和共存阴离子对磷酸盐的电容性吸收的影响[132]; (c) Pd/NiAl-LMO电极的硝酸盐电吸附和硝酸盐电还原作用[133]
Fig.7 (a) Effects of contact time on the phosphate adsorption of AC and pure Mg-M3+ LDHs and (b) effects of ionic strengths and coexisting anions on the capacitive uptake of phosphate[132]; (c) Nitrate electro-sorption and nitrate electro-reduction by Pd/NiAl-LMO electrode[133]
1 | SCHEWE J, HEINKE J, GERTEN D, et al. Multimodel assessment of water scarcity under climate change[J]. Proc Natl Acad Sci USA, 2014, 111(9): 3245-3250. |
2 | SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. |
3 | OPHIR A, GENDEL A. Steam driven large multi effect MVC (SD MVC) desalination process for lower energy consumption and desalination costs[J]. Desalination, 2007, 205: 224-230. |
4 | BLANK J E, TUSEL G F, NISANC S. The real cost of desalted water and how to reduce it further[J]. Desalination, 2007, 205: 298-311. |
5 | LIU Y, WANG K, XU X, et al. Recent advances in faradic electrochemical deionization: system architectures versus electrode materials[J]. ACS Nano, 2021, 15(9): 13924-13942. |
6 | STRATHMANN H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288. |
7 | MEHANNA M, SAITO T, YAN J, et al. Using microbial desalination cells to reduce water salinity prior to reverse osmosis[J]. Energy Environ Sci, 2010, 3(8): 1114-1120. |
8 | KIM S J, KO S H, KANG K H, et al. Direct seawater desalination by ion concentration polarization[J]. Nat Nanotechnol, 2010, 5(4): 297-301. |
9 | LIU N, YU L, LIU B, et al. Ti3C2-MXene partially derived hierarchical 1D/2D TiO2/Ti3C2 heterostructure electrode for high-performance capacitive deionization[J]. Adv Sci, 2023, 10(2): e2204041. |
10 | XING S, CHENG Y, YU F, et al. Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity[J]. J Colloid Interface Sci, 2021, 598: 511-518. |
11 | SHI W, LIU X, DENG T, et al. Enabling superior sodium capture for efficient water desalination by a tubular polyaniline decorated with prussian blue nanocrystals[J]. Adv Mater, 2020, 32(33): 1907404. |
12 | YU F, ZHANG X, LIU P, et al. “Blockchain-Like” mIL-101(Cr)/carbon black electrodes for unprecedented defluorination by capacitive deionization[J]. Small, 2023, 19(10): e2205619. |
13 | WANG L, LIN S. Intrinsic tradeoff between kinetic and energetic efficiencies in membrane capacitive deionization[J]. Water Res, 2018, 129: 394-401. |
14 | HAWKS S A, RAMACHANDRAN A, PORADA S, et al. Performance metrics for the objective assessment of capacitive deionization systems[J]. Water Res, 2019, 152: 126-137. |
15 | WANG L, DYKSTRA J E, LIN S. Energy efficiency of capacitive deionization[J]. Environ Sci Technol, 2019, 53(7): 3366-3378. |
16 | SUSS M E, PORADA S, SUN X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it?[J]. Energy Environ Sci, 2015, 8(8): 2296-2319. |
17 | 刘锐, 张琪琪, 姚寿广, 等. 操作参数对CDI/MCDI脱盐性能的影响及对比分析[J]. 水处理技术, 2023, 49(2): 75-80. |
LIU R, ZHANG Q Q, YAO S G, et al. Influence of operating parameters on the desalination performance of CDI/MCDI and comparative analysis[J]. Water Treat Technol, 2023, 49(2): 75-80. | |
18 | 吕晓丽, 肖荣林, 吴浩波, 等. 炭电极电容去离子技术研究进展[J]. 水处理技术, 2020, 46(8): 17-21, 33. |
LV X L, XIAO R L, WU H B, et al. Research progress of capacitive deionization technology with carbon electrode[J]. Water Treat Technol, 2020, 46(8): 17-21, 33. | |
19 | BIAN Y, YANG X, LIANG P, et al. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon[J]. Water Res, 2015, 85: 371-376. |
20 | XU B, XU X, GAO H, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization[J]. Sep Purif Technol, 2020, 250: 117243-117254. |
21 | LIANG P, YUAN L, YANG X, et al. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination[J]. Water Res, 2013, 47(7): 2523-2530. |
22 | WEI K, ZHANG Y, HAN W, et al. A novel capacitive electrode based on TiO2-NTs array with carbon embedded for water deionization: fabrication, characterization and application study[J]. Desalination, 2017, 420: 70-78. |
23 | PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Prog Mate Sci, 2013, 58(8): 1388-1442. |
24 | LIANG M, LIU N, ZHANG X, et al. A Reverse-defect-engineering strategy toward high edge-nitrogen-doped nanotube-like carbon for high-capacity and stable sodium ion capture[J]. Adv Funct Mater, 2022, 32(49): 2209741. |
25 | XIONG Y, YU F, MA J. Research progress in chlorine ion removal electrodes for desalination by capacitive deionization[J]. Acta Phys-Chim Sin, 2020, 38(5): 2006037-2006048. |
26 | SRIMUK P, SU X, YOON J, et al. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements[J]. Nat Rev Mater, 2020, 5(7): 517-538. |
27 | GAMAETHIRALALAGE J G, SINGH K, SAHIN S, et al. Recent advances in ion selectivity with capacitive deionization[J]. Energy Environ Sci, 2021, 14(3): 1095-1120. |
28 | LEE J, KIM S, KIM C, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy Environ Sci, 2014, 7(11): 3683-3689. |
29 | SUSS M E, PRESSER V. Water desalination with energy storage electrode materials[J]. Joule, 2018, 2(1): 10-15. |
30 | MA J, XIONG Y, DAI X, et al. Zinc spinel ferrite nanoparticles as a pseudocapacitive electrode with ultrahigh desalination capacity and long-term stability[J]. Environ Sci Technol Lett, 2020, 7(2): 118-125. |
31 | CAO J, WANG Y, WANG L, et al. Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high-performance desalination[J]. Nano Lett, 2019, 19(2): 823-828. |
32 | LI J, HU B, NIE P, et al. Fe-regulated δ-MnO2 nanosheet assembly on carbon nanofiber under acidic condition for high performance supercapacitor and capacitive deionization[J]. Appl Surf Sci, 2021, 542: 148715-148726. |
33 | XIONG Y, YU F, ARNOLD S, et al. Three-dimensional cobalt hydroxide hollow cube/vertical nanosheets with high desalination capacity and long-term performance stability[J]. Research, 2021, 2021: 9754145-9754158. |
34 | LI Q, XU X, GUO J, et al. Twdimensional MXene-polymer heterostructure with ordered in-plane mesochannels for high-performance capacitive deionization[J]. Angew Chem Int Ed Engl, 2021, 60(51): 26528-26534. |
35 | ZHAO J, WU B, HUANG X, et al. Efficient and durable sodium, chloride-doped iron oxide-hydroxide nanohybrid-promoted capacitive deionization of saline water via synergetic pseudocapacitive process[J]. Adv Sci 2022, 9(25): e2201678. |
36 | PENG W, WANG W, QI M, et al. Enhanced capacitive deionization of defect-containing MoS2/graphene composites through introducing appropriate MoS2 defect[J]. Electrochim Acta, 2021, 383: 138363-138374. |
37 | JIA F, SUN K, YANG B, et al. Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water[J]. Desalination, 2018, 446: 21-30. |
38 | KIM H, HONG J, PARK K Y, et al. Aqueous rechargeable Li and Na ion batteries[J]. Chem Rev, 2014, 114(23): 11788-11827. |
39 | ZHANG K, HAN X, HU Z, et al. Nanostructured Mn-based oxides for electrochemical energy storage and conversion[J]. Chem Soc Rev, 2015, 44(3): 699-728. |
40 | POST J E. Manganese oxide minerals: crystal structures and economic and environmental significance[J]. Proc Natl Acad Sci USA, 1999, 96(7): 3447-3454. |
41 | LI Q, ZHENG Y, XIAO D, et al. Faradaic electrodes open a new era for capacitive deionization[J]. Adv Sci, 2020, 7(22): 2002213. |
42 | FAN G, LI F, EVANS D G, et al. Catalytic applications of layered double hydroxides: recent advances and perspectives[J]. Chem Soc Rev, 2014, 43(20): 7040-7066. |
43 | AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ Sci, 2014, 7(5): 1597-1614. |
44 | LEONG Z Y, YANG H Y. A study of MnO2 with different crystalline forms for pseudocapacitive desalination[J]. ACS Appl Mater Inter, 2019, 11(14): 13176-13184. |
45 | TAN G, LU S, XU N, et al. Pseudocapacitive behaviors of polypyrrole grafted activated carbon and MnO2 electrodes to enable fast and efficient membrane-free capacitive deionization[J]. Environ Sci Technol, 2020, 54(9): 5843-5852. |
46 | HAND S, CUSICK R D. Characterizing the impacts of deposition techniques on the performance of MnO(2) cathodes for sodium electrosorption in hybrid capacitive deionization[J]. Environ Sci Technol, 2017, 51(20): 12027-12034. |
47 | WU T, WANG G, WANG S, et al. Highly stable hybrid capacitive deionization with a MnO2 anode and a positively charged cathode[J]. Environ Sci Technol Lett, 2018, 5(2): 98-102. |
48 | WU X, HAN Z, ZHENG X, et al. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties[J]. Nano Energy, 2017, 31: 410-417. |
49 | PADMANATHAN N, SELLADURAI S, RAZEEB K M. Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co3O4 nanowire/nanoflower hybrid structure in non-aqueous electrolyte[J]. RSC Adv, 2015, 5(17): 12700-12709. |
50 | YANG S, LUO M. In-situ embedding ZrO2 nanoparticles in hierarchically porous carbon matrix as electrode materials for high desalination capacity of hybrid capacitive deionization[J]. Mater Lett, 2019, 248: 197-200. |
51 | ZHAO C, WANG X, ZHANG S, et al. Porous carbon nanosheets functionalized with Fe3O4 nanoparticles for capacitive removal of heavy metal ions from water[J]. Environ Sci Water Res Technol, 2020, 6(2): 331-340. |
52 | MA X, CHEN Y A, ZHOU K, et al. Enhanced desalination performance via mixed capacitive-Faradaic ion storage using RuO2-activated carbon composite electrodes[J]. Electrochim Acta, 2019, 295: 769-777. |
53 | ZHANG X, HOU Z, LI X, et al. Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes[J]. J Mater Chem A, 2016, 4(3): 856-860. |
54 | LANSON B, DRITS V A, FENG Q, et al. Structure of synthetic Na-birnessite: evidence for a triclinic one-layer unit cell[J]. Am Mineral, 2002, 87(11/12): 1662-1671. |
55 | LEI J, XIONG Y, YU F, et al. Flexible self-supporting CoFe-LDH/MXene film as a chloride ions storage electrode in capacitive deionization[J]. Chem Eng J, 2022, 437: 135381-135389. |
56 | NAGARAJU G, CHANDRA SEKHAR S, KRISHNA BHARAT L, et al. Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors[J]. ACS Nano, 2017, 11(11): 10860-10874. |
57 | LV L, SUN P, GU Z, et al. Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger[J]. J Hazard Mater, 2009, 161(2): 1444-1449. |
58 | QIU X, SASAKI K, HIRAJIMA T, et al. Temperature effect on the sorption of borate by a layered double hydroxide prepared using dolomite as a magnesium source[J]. Chem Eng J, 2013, 225: 664-672. |
59 | REN Q, WANG G, WU T, et al. Calcined MgAl-layered double hydroxide/graphene hybrids for capacitive deionization[J]. Ind Eng Chem Res, 2018, 57(18): 6417-6425. |
60 | LV L, HE J, WEI M, et al. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies[J]. Water Res, 2006, 40(4): 735-743. |
61 | HU C, WANG T, DONG J, et al. Capacitive deionization from reconstruction of NiCoAl-mixed metal oxide film electrode based on the “memory effect”[J]. Appl Surf Sci, 2018, 459: 767-773. |
62 | MIYATA S. Physico-chemical properties of synthetic hydrotalcites in relation to composition[J]. Clay Clay Miner, 1980, 28(1): 50-56. |
63 | LI Q, LU C, CHEN C, et al. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor[J]. Energy Stor Mater, 2017, 8: 59-67. |
64 | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37): 4248-4253. |
65 | 刘炫利, 陈星星. 二维MXene材料在电容去离子领域研究进展[J]. 辽宁科技大学学报, 2022, 45(3): 221-229. |
LIU X L, CHEN X X. Research progress of two-dimensional MXene materials in capacitive deionization[J]. J Liaoning Univ Sci Technol, 2022, 45(3): 221-229. | |
66 | WANG X, KAJIYAMA S, IINUMA H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nat Commun, 2015, 6(1): 6544. |
67 | ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chem Mater, 2017, 29(18): 7633-7644. |
68 | SRIMUK P, KAASIK F, KRÜNER B, et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization[J]. J Mater Chem A, 2016, 4(47): 18265-18271. |
69 | BAO W, TANG X, GUO X, et al. Porous cryo-dried MXene for efficient capacitive deionization[J]. Joule, 2018, 2(4): 778-787. |
70 | IHSANULLAH I. Potential of MXenes in water desalination: current status and perspectives[J]. Nano-Micro Lett, 2020, 12(1): 72. |
71 | MA J, CHENG Y, WANG L, et al. Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity[J]. Chem Eng J, 2020, 384: 123329-123336. |
72 | HU Z, LIU Q, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J]. Adv Mater, 2017, 29(48): 1700606. |
73 | CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nat Chem, 2013, 5(4): 263-275. |
74 | VOIRY D, MOHITE A, CHHOWALLA M. Phase engineering of transition metal dichalcogenides[J]. Chem Soc Rev, 2015, 44(9): 2702-2712. |
75 | ZENG Z, YIN Z, HUANG X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication[J]. Angew Chem Int Ed Engl, 2011, 50(47): 11093-11097. |
76 | WANG Y Z, SHAN X Y, WANG D W, et al. A rechargeable quasi-symmetrical MoS2 battery[J]. Joule, 2018, 2(7): 1278-1286. |
77 | HU Z, WANG L, ZHANG K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angew Chem Int Ed Engl, 2014, 53(47): 12794-12798. |
78 | TANG H, WANG J, YIN H, et al. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes[J]. Adv Mater, 2015, 27(6): 1117-1123. |
79 | ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nat Nanotechnol, 2015, 10(4): 313-318. |
80 | 郭其景, 詹伟泉, 王清淼, 等. 二硫化钼作为海水淡化材料的研究进展[J]. 化工进展, 2021, 40(3): 1456-1468. |
GUO Q J, ZHAN W Q, WANG Q S, et al. Progress of molybdenum disulphide as a material for seawater desalination[J]. Adv Chem Eng, 2021, 40(3): 1456-1468. | |
81 | XING F, LI T, LI J, et al. Chemically exfoliated MoS2 for capacitive deionization of saline water[J]. Nano Energy, 2017, 31: 590-595. |
82 | SRIMUK P, LEE J, FLEISCHMANN S, et al. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide[J]. J Mater Chem A, 2017, 5(30): 15640-15649. |
83 | FAN Z, YAN J, WEI T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Adv Funct Mater, 2011, 21(12): 2366-2375. |
84 | HU L, CHEN W, XIE X, et al. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading[J]. ACS Nano, 2011, 5(11): 8904-8913. |
85 | YUAN L, LU X H, XIAO X, et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure[J]. ACS Nano, 2012, 6(1): 656-661. |
86 | EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. |
87 | EL-KADY M F, IHNS M, LI M, et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage[J]. Proc Natl Acad Sci USA, 2015, 112(14): 4233-4238. |
88 | LIANG M, BAI X, YU F, et al. A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization[J]. Nano Res, 2021, 14(3): 684-691. |
89 | LEI J, YU F, XIE H, et al. Ti3C2Tx MXene/carbon nanofiber multifunctional electrode for electrode ionization with antifouling activity[J]. Chem Sci, 2023, 14(13): 3610-3621. |
90 | LIANG M, WANG L, PRESSER V, et al. Combining battery-type and pseudocapacitive charge storage in Ag/Ti3C2Tx MXene electrode for capturing chloride ions with high capacitance and fast ion transport[J]. Adv Sci, 2020, 7(18): 2000621. |
91 | KAEMPGEN M, CHAN C K, MA J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes[J]. Nano Lett, 2009, 9(5): 1872-1876. |
92 | CHEN H, HU L, CHEN M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J]. Adv Funct Mater, 2014, 24(7): 934-942. |
93 | LI F, XUE M, ZHANG X, et al. Advanced composite 2D energy materials by simultaneous anodic and cathodic exfoliation[J]. Adv Energy Mater, 2018, 8(12): 1702794. |
94 | QUAN W, JIANG C, WANG S, et al. New nanocomposite material as supercapacitor electrode prepared via restacking of Ni-Mn LDH and MnO2 nanosheets[J]. Electrochim Acta, 2017, 247: 1072-1079. |
95 | SHEN X, XIONG Y, HAI R, et al. All-MXene-based integrated membrane electrode constructed using Ti3C2Tx as an intercalating agent for high-performance desalination[J]. Environ Sci Technol, 2020, 54(7): 4554-4563. |
96 | GUO W, YU C, LI S, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives[J]. Nano Energy, 2019, 57: 459-472. |
97 | NGUYEN T, MONTEMOR M D F. Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices[J]. Adv Sci, 2019, 6(9): 1801797. |
98 | LONG C, ZHENG M, XIAO Y, et al. Amorphous Ni-Co binary oxide with hierarchical porous structure for electrochemical capacitors[J]. ACS Appl Mater Inter, 2015, 7(44): 24419-24429. |
99 | ZHAI T, XIE S, YU M, et al. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors[J]. Nano Energy, 2014, 8: 255-263. |
100 | PAN X, ZHAO Y, REN G, et al. Highly conductive VO2 treated with hydrogen for supercapacitors[J]. ChemComm, 2013, 49(38): 3943-3945. |
101 | SUN D S, LI Y H, WANG Z Y, et al. Understanding the mechanism of hydrogenated NiCo2O4 nanograss supported on Ni foam for enhanced-performance supercapacitors[J]. J Mater Chem A, 2016, 4(14): 5198-5204. |
102 | PARANT J P, OLAZCUAGA R, DEVALETTE M, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x≤1)[J]. J Solid State Chem, 1971, 3(1): 1-11. |
103 | SAUVAGE F, LAFFONT L, TARASCON J M, et al. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2[J]. Inorg Chem, 2007, 46(8): 3289-3294. |
104 | PASTA M, WESSELLS C D, CUI Y, et al. A desalination battery[J]. Nano Lett, 2012, 12(2): 839-843. |
105 | ZHANG Y, LIU Z, DENG H, et al. Rectangular tunnel-structured Na0.4MnO2 as a promising cathode material withstanding a high cutoff voltage for Na-ion batteries[J]. ChemElectroChem, 2019, 6(6): 1711-1721. |
106 | AI J, LI J, LI K, et al. Highly flexible, self-healable and conductive poly(vinyl alcohol)/Ti3C2Tx MXene film and it's application in capacitive deionization[J]. Chem Eng J, 2021, 408: 127256-127264. |
107 | SHEN X, HAI R, WANG X, et al. Free-standing 3D alkalized Ti3C2Tx/Ti3C2Tx nanosheet membrane electrode for highly efficient and stable desalination in hybrid capacitive deionization[J]. J Mater Chem A, 2020, 8(37): 19309-19318. |
108 | LIU Y, WANG L, YAO Q, et al. In situ synthesis of bismuth nanoclusters within carbon nano-bundles from metal-organic framework for chloride‐driven electrochemical deionization[J]. Adv Funct Mater, 2021, 32(12). |
109 | LIU Z, LI H. Exploration of the exceptional capacitive deionization performance of CoMn2O4 microspheres electrode[J]. Energy Environ Mater, 2021, 6(1). |
110 | 张须媚, 王霜, 高娟娟, 等. 电容去离子技术在水处理中的应用[J]. 水处理技术, 2018, 44(9): 16-21, 31. |
ZHANG S M, WANG S, GAO J J, et al. Application of capacitive deionization technology in water treatment[J]. Water Treat Technol, 2018, 44(9): 16-21, 31. | |
111 | LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505. |
112 | KIM S, YOON H, SHIN D, et al. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide[J]. J Colloid Interface Sci, 2017, 506: 644-648. |
113 | TANSEL B, SAGER J, RECTOR T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Sep Purif Technol, 2006, 51(1): 40-47. |
114 | TSUJIMURA A, UCHIDA M, OKUWAKI A. Synthesis and sulfate ion-exchange properties of a hydrotalcite-like compound intercalated by chloride ions[J]. J Hazard Mater, 2007, 143(1): 582-586. |
115 | DANG L, LIANG H, ZHUO J, et al. Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis[J]. Chem Mater, 2018, 30(13): 4321-4330. |
116 | MIYATA S. Anion-exchange properties of hydrotalcite-like compounds[J]. Clay Clay Miner, 1983, 31(4): 305-311. |
117 | BATTISTEL A, PALAGONIA M S, BROGIOLI D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Adv Mater, 2020, 32(23): 1905440. |
118 | KUMAR A, FUKUDA H, HATTON T A, et al. Lithium recovery from oil and gas produced water: a need for a growing energy industry[J]. ACS Energy Lett, 2019, 4(6): 1471-1474. |
119 | PASTA M, BATTISTEL A, LA MANTIA F. Batteries for lithium recovery from brines[J]. Energy Environ Sci, 2012, 5(11): 9487-9491. |
120 | TRóCOLI R, ERINMWINGBOVO C, LA MANTIA F. Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate[J]. ChemElectroChem, 2017, 4(1): 143-149. |
121 | PALAGONIA M S, BROGIOLI D, LA MANTIA F. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell[J]. Desalination, 2020, 475: 114192. |
122 | LEE J, YU S H, KIM C, et al. Highly selective lithium recovery from brine using a λ-MnO2-Ag battery[J]. Phys Chem Chem Phys, 2013, 15(20): 7690-7695. |
123 | SU X, KUSHIMA A, HALLIDAY C, et al. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water[J]. Nat Commun, 2018, 9(1): 4701. |
124 | FU F, WANG Q. Removal of heavy metal ions from wastewaters: a review[J]. J Environ Manage, 2011, 92(3): 407-418. |
125 | LI P, GUI Y, BLACKWOOD D J. Development of a nanostructured α-MnO2/carbon paper composite for removal of Ni2+/Mn2+ ions by electrosorption[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19615-19625. |
126 | LIU L, PENG Q, QIU G, et al. Cd2+ adsorption performance of tunnel-structured manganese oxides driven by electrochemically controlled redox[J]. Environ Pollut, 2019, 244: 783-791. |
127 | LIU L, QIU G, SUIB S L, et al. Enhancement of Zn2+ and Ni2+ removal performance using a deionization pseudocapacitor with nanostructured birnessite and its carbon nanotube composite electrodes[J]. Chem Eng J, 2017, 328: 464-473. |
128 | JIN W, HU M. Cobalt oxide, sulfide and phosphide-decorated carbon felt for the capacitive deionization of lead ions[J]. Sep Purif Technol, 2020, 237: 116343. |
129 | CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015. |
130 | HAWKS S A, CERON M R, OYARZUN D I, et al. Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization[J]. Environ Sci Technol, 2019, 53(18): 10863-10870. |
131 | MOHAMMADI M, MOHAMMADI TORKASHVAND A, BIPARVA P, et al. Synthesis ratios of Mg-Al and Zn-Al layered double hydroxides efficiency and selectivity in nitrate removal from solution[J]. Global J Environ Sci Manag, 2019, 5(4): 485-500. |
132 | ZHU E, HONG X, YE Z, et al. Influence of various experimental parameters on the capacitive removal of phosphate from aqueous solutions using LDHs/AC composite electrodes[J]. Sep Purif Technol, 2019, 215: 454-462. |
133 | HU C, DONG J, WANG T, et al. Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode[J]. Chem Eng J, 2018, 335: 475-482. |
[1] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[2] | 杜慧, 姚晨阳, 彭皓, 姜波, 李顺祥, 姚俊烈, 郑方, 杨方, 吴爱国. 过渡金属掺杂磁性纳米粒子在生物医学领域中的研究进展[J]. 应用化学, 2022, 39(3): 391-406. |
[3] | 槐梦娇, 刘陶雪婷, 姜忠义. 水通道蛋白启发下的人工水通道研究进展[J]. 应用化学, 2022, 39(1): 99-109. |
[4] | 毕一飘, 宫雪, 杨发, 阮明波, 宋平, 徐维林. 多价MnOx/C电催化剂用于高效氮还原反应[J]. 应用化学, 2020, 37(9): 1048-1055. |
[5] | 蒙阳, 杨婵, 彭娟. 基于铁、钴、镍金属磷化物纳米催化剂的碱性条件下电解水制氢的研究进展[J]. 应用化学, 2020, 37(7): 733-745. |
[6] | 王春丽,孙连山,钟鸣,王立民,程勇. 过渡金属及其化合物应用于锂硫电池的研究进展[J]. 应用化学, 2020, 37(4): 387-404. |
[7] | 龙霞,王亚琼,鞠敏,王政,杨世和. 过渡金属基层状双羟基化合物的调控及其在电化学水氧化中的应用[J]. 应用化学, 2018, 35(8): 881-889. |
[8] | 黄继梅, 孟瑞晋, 杨金虎. 硫掺杂二氧化钛/碳化钛复合材料的制备及储锂性能[J]. 应用化学, 2018, 35(8): 925-931. |
[9] | 黄继梅, 孟瑞晋, 杨金虎. 硫掺杂二氧化钛/碳化钛复合材料的制备及储锂性能[J]. 应用化学, 2018, 35(8): 0-0. |
[10] | 陈清,韩庆. 石墨烯膜在水处理中的应用[J]. 应用化学, 2018, 35(3): 299-306. |
[11] | 吴强,康传清,高连勋. 廉价过渡金属催化烯烃异构反应研究进展[J]. 应用化学, 2017, 34(1): 25-39. |
[12] | 朱兆强,杜卫民,郭威,朱文娟. 过渡金属三元化合物的制备及其应用于超级电容器的研究进展[J]. 应用化学, 2016, 33(3): 267-276. |
[13] | 常艳红, 董晓宁. 多孔壳聚糖接枝聚丙烯酸/钠基蒙脱土复合高吸水凝胶的制备及其对Pb2+的吸附[J]. 应用化学, 2015, 32(6): 623-628. |
[14] | 彭新红, 初喜章, 单科, 黄鹏飞. 基于海水淡化的生物电化学脱盐技术研究进展及应用前景[J]. 应用化学, 2015, 32(2): 134-142. |
[15] | 彭维, 李杰, 程舸, 谢珍珍, 石磊. 离子印迹法制备对铜离子(Ⅱ)选择性吸附的碳基材料[J]. 应用化学, 2015, 32(11): 1307-1311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||