应用化学 ›› 2023, Vol. 40 ›› Issue (9): 1233-1244.DOI: 10.19894/j.issn.1000-0518.220395
臧志飞1,2, 梁杰1, 习本军3, 彭春雪4, 刘渊4, 王晨晔2,5, 王朵2()
收稿日期:
2022-12-07
接受日期:
2023-06-01
出版日期:
2023-09-01
发布日期:
2023-09-14
通讯作者:
王朵
基金资助:
Zhi-Fei ZANG1,2, Jie LIANG1, Ben-Jun XI3, Chun-Xue PENG4, Yuan LIU4, Chen-Ye WANG2,5, Duo WANG2()
Received:
2022-12-07
Accepted:
2023-06-01
Published:
2023-09-01
Online:
2023-09-14
Contact:
Duo WANG
About author:
wangduo@ipe.ac.cnSupported by:
摘要:
草甘膦[N-(磷酸甲基)-甘氨酸]是一种除草活性高的有机磷农药,其生产过程产生的废液成分复杂,有机物和盐含量高,无害化处理和资源化利用难度大。本文综述了2000年至今焚烧、高级氧化、吸附、化学沉淀和膜分离技术等国内外处理草甘膦废液主要工艺的原理、性能和优缺点。焚烧、高级氧化技术及生化法处理草甘膦废水的选择性较低,不利于草甘膦废水的资源化利用。吸附法普遍存在吸附剂吸附容量小的问题,开发吸附量大、成本低廉且易循环利用的吸附剂是草甘膦废液处理工业应用的发展方向。化学沉淀法在高盐、高总磷和高化学需氧量(Chemical oxygen demand, COD)废水环境中分离性能优异,但产生大量成分复杂的污泥,需进行二次处理。采用膜组合方法对废液进行除杂浓缩,可有效回收有价产品,截留有害物质,但因废水成分复杂,单独使用膜技术处理草甘膦废水不能完全达到处理指标。液膜、聚合物包容膜等新型膜技术稳定性好、使用寿命长、操作简便和环境友好等,在草甘膦等农药行业中高盐有机废水的绿色经济处理和有价物高值回收利用等领域展示了广阔的应用前景。
中图分类号:
臧志飞, 梁杰, 习本军, 彭春雪, 刘渊, 王晨晔, 王朵. 草甘膦废液处理及资源化利用研究进展[J]. 应用化学, 2023, 40(9): 1233-1244.
Zhi-Fei ZANG, Jie LIANG, Ben-Jun XI, Chun-Xue PENG, Yuan LIU, Chen-Ye WANG, Duo WANG. Research Progress on the Treatment and Resource Utilization of Glyphosate Wastewater[J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1233-1244.
Sorbent | Surface area/particle size of the sorbent | Adsorption concentration range/(10-6) | Adsorption capacity/(mg·g-1) | pH | Adsorption percentage | Ref. |
---|---|---|---|---|---|---|
D301 resin | 0.315~1.25mm | - | 181.8 | - | 79.3 | [ |
D301 resin | 202.455 m2/g 400~1 000 μm | 1 000 | 392.2 | 1~12 | - | [ |
D301 resin | 202.455 m2/g 400~1 000 μm | 1 000 | 603.5 | 1~6 | 60.35 | [ |
MnO2 | 168 cm2/mg | 16.9~84.5 | - | 3~9 | 12.6~51.6 | [ |
FFA-1 functional fiber/D301 resin | - | 5 000~12 000 | - | 11 | 95 | [ |
Alkalescent fiber FFA-1 | - | 10 000 | 569.2 | 9 | - | [ |
Magnetic glycidyl trimethyl ammonium chloride-β-cyclodextrin composite hydrogel | 0.67 m2/g 0.52 nm | 0~200 | 179.2 | 3~10.5 | 89.6 | [ |
Modified oyster shell powder | <125 μm | 500~1 000 | 66.1 | 4±0.2 | - | [ |
LX-9 Weak alkaline anion adsorption resin | - | 2 500~30 000 | - | - | 85 | [ |
表1 不同吸附剂对草甘膦的吸附效果
Table 1 Performance of different adsorbents on glyphosate adsorption
Sorbent | Surface area/particle size of the sorbent | Adsorption concentration range/(10-6) | Adsorption capacity/(mg·g-1) | pH | Adsorption percentage | Ref. |
---|---|---|---|---|---|---|
D301 resin | 0.315~1.25mm | - | 181.8 | - | 79.3 | [ |
D301 resin | 202.455 m2/g 400~1 000 μm | 1 000 | 392.2 | 1~12 | - | [ |
D301 resin | 202.455 m2/g 400~1 000 μm | 1 000 | 603.5 | 1~6 | 60.35 | [ |
MnO2 | 168 cm2/mg | 16.9~84.5 | - | 3~9 | 12.6~51.6 | [ |
FFA-1 functional fiber/D301 resin | - | 5 000~12 000 | - | 11 | 95 | [ |
Alkalescent fiber FFA-1 | - | 10 000 | 569.2 | 9 | - | [ |
Magnetic glycidyl trimethyl ammonium chloride-β-cyclodextrin composite hydrogel | 0.67 m2/g 0.52 nm | 0~200 | 179.2 | 3~10.5 | 89.6 | [ |
Modified oyster shell powder | <125 μm | 500~1 000 | 66.1 | 4±0.2 | - | [ |
LX-9 Weak alkaline anion adsorption resin | - | 2 500~30 000 | - | - | 85 | [ |
图5 (a) PIM膜分离回收草甘膦工作流程示意图; (b) 草甘膦高倍富集机制示意图[53]
Fig.5 (a) Schematic diagram of separating glyphosate in PIM system; (b) Schematic diagram of the enrichment of glyphosate[53]
1 | ANNETT R, HABIBI H R, HONTELA A. Impact of glyphosate and glyphosate-based herbicideson the freshwater environment[J]. J Appl Toxicol, 2014, 34(5): 458-479. |
2 | 杨明慧. 草甘膦利弊分析[J]. 农村经济与科技, 2020, 31(13): 67-69. |
YANG M H. Analysis of advantages and disadvantages of glyphosate[J]. Rural Econ Sci Technol, 2020, 31(13): 67-69. | |
3 | ESPINOZA-MONTERO P J, VEGA-VERDUGA C, ALULEMA-PULLUPAXI P, et al. Technologiesemployed in the treatment of water contaminated with glyphosate: a review[J]. Mol Online, 2020, 25(23): 5550. |
4 | 丁国良, 邱晖, 汪勇. 草甘膦废水处理技术综述及最新进展[J]. 山东化工, 2021, 50(13): 61-62. |
DING G L, QIU H, WANG Y. Summary and latest progress of glyphosate wastewater treatment technology[J]. Shandong Chem Ind, 2021, 50(13): 61-62. | |
5 | WOODBURN A T. Glyphosate: production, pricing and use worldwide[J]. Pest Manage Sci, 2000, 56(4): 309-312. |
6 | 王军生, 纪烈义, 魏文涛. 草甘膦生产技术研究进展[J]. 山东化工, 2018, 47(20): 32-35. |
WANG J S, JI L Y, WEI W T. Research progress of glyphosate production technology[J]. Shandong Chem Ind, 2018, 47(20): 32-35. | |
7 | 陈丹, 李健, 李国儒, 等. 草甘膦合成工艺研究进展[J]. 化工进展, 2013, 32(7): 1635-1640. |
CHEN D, LI J, LI G R, et al. Research progress of glyphosate synthesis process[J]. Chem Ind Eng Prog, 2013, 32(7): 1635-1640. | |
8 | 徐国明, 周良, 郑端镛, 等. IDA路线草甘膦的清洁生产方法和绿色化学合成技术[J]. 农药, 2007, 46(10): 656-658. |
XU G M, ZHOU L, ZHENG D Y, et al. Clean production method and green chemical synthesis technology of glyphosate from IDA route[J]. Pesticide, 2007, 46(10): 656-658. | |
9 | 茆庆文. 草甘膦生产工艺综述及其发展趋势[J]. 安徽化工, 2008, 34(3): 5-7. |
MAO Q W. Summary of glyphosate production process and its development trend[J]. Anhui Chem Ind, 2008, 34(3): 5-7. | |
10 | 胡景焕, 李福祥. 草甘膦生产的技术进展[J]. 山西化工, 2010, 30(1): 38-43. |
HU J H, LI F X. Technological progress in glyphosate production[J]. Shanxi Chem Ind, 2010, 30(1): 38-43. | |
11 | 夏明, 朱红军, 刘山. 草甘膦合成工艺现状及展望[J]. 浙江化工, 2009, 40(9): 6-9. |
XIA M, ZHU H J, LIU S. Status and prospect of glyphosate synthesis process[J]. Zhejiang Chem Ind, 2009, 40(9): 6-9. | |
12 | 丁明月. 草甘膦母液定向热转化过程实验研究及数值模拟[D]. 上海: 华东理工大学, 2021. |
DING M Y. Experimental study and numerical simulation of the directional thermal conversion process of glyphosate mother liquor[D]. Shanghai: East China University of Technology, 2021. | |
13 | 姜胜宝, 朱建民, 周曙光, 等. 高温氧化-定向转化法处理草甘膦生产含磷废料[J]. 化工环保, 2018, 38(4): 397-402. |
JIANG S B, ZHU J M, ZHOU S G, et al. Treatment of phosphorus containing waste from glyphosate production by high temperature oxidation directional conversion method[J]. Environ Prot Chem Ind, 2018, 38(4): 397-402. | |
14 | 罗秀朋, 魏宏大, 周皓. 草甘膦母液定向转换焚烧系统[J]. 农药, 2020, 59(6): 418-421. |
LUO X P, WEI H D, ZHOU H. Glyphosate mother liquor directional conversion incineration system[J] Pesticide, 2020, 59 (6): 418-421. | |
15 | 关自斌. 湿式催化氧化法处理高浓度有机废水技术的研究与应用[J]. 铀矿冶, 2004, 23(2): 101-106. |
GUAN Z B. Research and application of wet catalytic oxidation technology for treating high concentration organic wastewater[J]. Uranium Min Metall, 2004, 23(2): 101-106. | |
16 | 刘树洋, 徐宁, 周海云. 催化湿式H2O2氧化预处理草甘膦母液的研究[J]. 农药, 2016, 55(7): 497-500. |
LIU S Y, XU N, ZHOU H Y. Study on catalytic wet hydrogen peroxide oxidation pretreatment of glyphosate mother liquor[J]. Pesticides, 2016, 55(7): 497-500. | |
17 | 朱建民, 詹波, 郑敏, 等. Fenton氧化法处理废水中有机磷的工艺及装置[J]. 化学反应工程与工艺, 2017, 33(6): 571-575. |
ZHU J M, ZHAN B, ZHENG M, et al. Fenton oxidation process and device for treating organic phosphorus in wastewater[J]. Chem React Eng Technol, 2017, 33(6): 571-575. | |
18 | 肖羽堂, 陈苑媚, 王冠平, 等. 难降解废水电催化处理研究进展[J]. 工业水处理, 2020, 40(6): 1-6. |
XIAO Y T, CHEN Y M, WANG G P, et al. Research progress in catalytic treatment of refractory wastewater[J]. Ind Water Treat, 2020, 40(6): 1-6. | |
19 | 焦旭阳, 张新妙, 栾金义. 电催化氧化技术处理含盐有机废水研究进展[J]. 化工环保, 2019, 39(1): 6-10. |
JIAO X Y, ZHANG X M, LUAN J Y. Research progress in the treatment of salty organic wastewater by electrocatalytic oxidation technology[J]. Environ Prot Chem Ind, 2019, 39(1): 6-10. | |
20 | 石进, 吴建阳, 马培岚, 等. 草甘膦废水电氧化降解工艺初探[J]. 浙江化工, 2021, 52(3): 38-44. |
SHI J, WU J Y, MA P L, et al. Preliminary study on the oxidative degradation process of glyphosate waste water[J]. Zhejiang Chem Ind, 2021, 52(3): 38-44. | |
21 | 李祥, 豆静茹, 马倩鹤, 等. 微电解-Fenton氧化技术处理草甘膦废水的研究[J]. 工业水处理, 2016, 36(11): 57-60. |
LI X, DOU J R, MA Q H, et al. Study on the treatment of glyphosate wastewater by micro electrolysis Fenton oxidation technology[J]. Ind Water Treat, 2016, 36(11): 57-60. | |
22 | 沈丽静, 乐清华, 杨毓智, 等. 活性炭处理草甘膦废水的静态吸附研究[J]. 化学工程师, 2006, 20(10): 46-49. |
SHEN L J, LE Q H, YANG Y Z, et al. Study on static adsorption of glyphosate wastewater treated by activated carbon[J]. Chem Eng, 2006, 20(10): 46-49. | |
23 | 宋昭仪, 胥维昌, 马文静, 等. D301树脂吸附废水中草甘膦的研究[J]. 现代农药, 2019, 18(5): 33-37. |
SONG Z Y, XU W C, MA W J, et al. Study on adsorption of glyphosate in wastewater by D301 resin[J]. Mod Agrochem, 2019, 18(5): 33-37. | |
24 | 陈飞雄, 李国鹏, 周彩荣, 等. 树脂D301M吸附草甘膦的热力学及动力学[J]. 北京理工大学学报, 2012, 32(6): 650-654. |
CHEN F X, LI G P, ZHOU C R, et al. Thermodynamics and kinetics of adsorption of glyphosate by resin D301M[J]. J Beijing Univ Technol, 2012, 32(6): 650-654. | |
25 | WANG Y, GUO Y P, LI H X, et al. Sequential recycle of valuable phosphorus compounds of glyphosine, glyphosate, and phosphorous acid from glyphosate mother liquor by D301 resin through sorbent dosage control[J]. J Environ Chem Eng, 2021, 9(6): 106474. |
26 | 彭波, 王黎, 李艳荣. 活性氧化铝吸附法处理草甘膦生产废水的研究[J]. 能源化工, 2007, 28(1): 44-48. |
PENG B, WANG L, LI Y R. Study on the treatment of glyphosate production wastewater by activated alumina adsorption[J]. Energy Chem Eng, 2007, 28(1): 44-48. | |
27 | 兰华春, 焦兆飞, 赵旭, 等. MnO2吸附-氧化去除草甘膦的研究[J]. 环境科学学报, 2013, 33(8): 2181-2186. |
LAN H C, JIAO Z F, ZHAO X, et al. Study on the removal of glyphosate by MnO2 adsorption oxidation[J]. J Environ Sci, 2013, 33(8): 2181-2186. | |
28 | 周彩荣, 高玉国, 李国鹏. 动态吸附法从草甘膦生产废水中回收有效成分的工艺[J]. 化工学报, 2013, 64(4): 1453-1458. |
ZHOU C R, GAO Y G, LI G P. Process of recovering effective components from glyphosate production wastewater by dynamic adsorption[J]. J Chem Eng, 2013, 64(4): 1453-1458. | |
29 | ZHOU C R, LI G P, JIANG D G. Study on behavior of alkalescent fiber FFA-1 adsorbing glyphosate from production wastewater of glyphosate[J]. Fluid Phase Equilib, 2014, 362: 69-73. |
30 | 李俊仪, 王毅力. 磁性环氧丙基三甲基氯化铵-β-环糊精复合水凝胶对草甘膦的吸附性能[J]. 环境工程学报, 2020, 14(11): 2969-2979. |
LI J Y, WANG Y L. Magnetic epoxy propyl trimethyl ammonium chloride-β-adsorption properties of cyclodextrin composite hydrogel for glyphosate[J]. J Environ Eng, 2020, 14(11): 2969-2979. | |
31 | 张伟, 梁哲, 汪爱河, 等. 改性牡蛎壳粉优化制备及其对草甘膦的吸附性能[J]. 工业水处理, 2022, 42(3): 90-97. |
ZHANG W, LIANG Z, WANG A H, et al. Optimized preparation of modified oyster shell powder and its adsorption performance for glyphosate[J]. Ind Water Treat, 2022, 42(3): 90-97. | |
32 | 朱建民, 陈华伟, 陈静, 等. 树脂吸附法资源化回收草甘膦工艺研究[J]. 杭州化工, 2012, 42(2):27-28. |
ZHU J M, CHEN H W, CHEN J, et al. Study on the recycling process of glyphosate by resin adsorption[J]. Hangzhou Chem Ind, 2012, 42(2): 27-28. | |
33 | 杨作清, 李素芹, 熊国宏. 钢铁工业水处理实用技术与应用[M]. 北京: 冶金工业出版社, 2015. |
YANG Z Q, LI S Q, XIONG G H. Practical technology and application of water treatment in iron and steel industry[M]. Beijing: Metallurgical Industry Press, 2015. | |
34 | GORONSZY M C, 朱明权, WUTSCHER K. 循环式活性污泥法(CAST)的应用及其发展[J]. 中国给水排水, 1996(6): 4-10. |
GORONSZY M C, ZHU M Q, WUTSCHER K. Application and development of cyclic activated sludge process (CAST)[J]. China Water Wastewater, 1996(6): 4-10. | |
35 | 杨宗政, 许文帅, 吴志国, 等. 微生物固定化及其在环境污染治理中的应用研究进展[J]. 微生物学通报, 2020, 47(12): 4278-4292. |
YANG Z Z, XU W S, WU Z G, et al. Research progress of microbial immobilization and its application in environmental pollution control[J]. Microbiol China, 2020, 47(12): 4278-4292. | |
36 | 郑敏, 周林成, 朱建民, 等. 生物和物化组合法深度处理草甘膦废水工艺[J]. 化学反应工程与工艺, 2019, 35(6): 559-563. |
ZHENG M, ZHOU L C, ZHU J M, et al. Advanced treatment of glyphosate wastewater by combined biological and physicochemical methods[J]. Chem React Eng Technol, 2019, 35(6): 559-563. | |
37 | 沈光明, 王娜, 王垚, 等. 化工强化-生物反应器深度处理草甘膦废水研究[J]. 化工生产与技术, 2021, 27(4): 38-41. |
SHEN G M, WANG N, WANG Y, et al. Study on advanced treatment of glyphosate wastewater by chemical intensification bioreactor[J]. Chem Prod Technol, 2021, 27(4): 38-41. | |
38 | 车林轩, 程伟钊, 韦志鹏. 污水除磷技术及影响因素的研究进展[J]. 应用化工, 2022, 51(6): 1811-1816. |
CHE L X, CHENG W Z, WEI Z P. Research progress of wastewater phosphorus removal technology and influencing factors[J]. Appl Chem Ind, 2022, 51(6): 1811-1816. | |
39 | LIU D, ZHOU S. Application of chemical coagulation to phosphorus removal from glyphosate wastewater[J]. Int J Environ Sci Technol, 2022, 19(4): 2345-2352. |
40 | 王朵, 杨超, 王勇. 一种草甘膦生产废水的处理方法及含磷废弃物的高值回用: 中国, 202211020786.4[P]. 2022-11-11. |
WANG D, YANG C, WANG Y. The invention relates to a treatment method of glyphosate production wastewater and a high value reuse of phosphorus containing waste: CN, 202211020786.4[P]. 2022-11-11. | |
41 | WIESNER M R, APTEL P. Mass transport and permeate flux and fouling in pressure-driven processes[J]. Water Treat Membr Processes, 1996, 30(4): 1-4. |
42 | 唐元晖, 扈阳, 燕至琴, 等. 高浓度含盐草甘膦溶液的纳滤分离实验研究[J]. 化工学报, 2019, 70(7): 2574-2583. |
TANG Y H, HU Y, YAN Z Q, et al. Experimental study on nanofiltration separation of high concentration salt containing glyphosate solution[J]. J Chem Eng, 2019, 70(7): 2574-2583. | |
43 | 黄华, 李雪梅, 潘成, 等. SPEEK涂层纳滤膜处理草甘膦废水[J]. 环境工程学报, 2012, 6(8): 2489-2494. |
HUANG H, LI X M, PAN C, et al. Treatment of glyphosate wastewater with speek coated nanofiltration membrane[J]. J Environ Eng, 2012, 6(8): 2489-2494. | |
44 | 徐寅初, 吴礼光, 卫龙, 等. 一种用集成膜分离浓缩草甘膦母液的方法: 中国, 1775786 B[P]. 2011-01-19. |
XU Y C, WU L G, WEI L, et al. A method for separating and concentrating glyphosate mother liquor with integrated membrane: CN, 1775786 B[P]. 2011-01-19. | |
45 | LUO J, WEI S, SU Y, et al. Desalination and recovery of iminodiacetic acid (IDA) from its sodium chloride mixtures by nanofiltration[J]. J Membr Sci, 2009, 342(1/2): 35-41. |
46 | XIE M, LIU Z, XU Y. Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration[J]. J Hazard Mater, 2010, 181(1/3): 975-980. |
47 | 魏思宇, 周荣丰. 甲醛废水前处理方法的选择[D]. 上海: 同济大学, 2007. |
WEI S Y, ZHOU R F. Selection of pretreatment methods for formaldehyde wastewater[D]. Shanghai: Tongji University, 2007. | |
48 | 陈樱玉, 潘雪峰. 液膜分离技术处理化工废水的应用进展[J]. 广东化工, 2012, 39(6): 124-124. |
CHEN Y Y, PAN X F. Application progress of liquid membrane separation technology in the treatment of chemical wastewater[J]. Guangdong Chem Ind, 2012, 39(6): 124-124. | |
49 | 顾忠茂. 液膜分离技术进展[J]. 膜科学与技术, 2003, 23(4): 214-223, 233. |
GU Z M. Progress in liquid membrane separation technology[J]. Membr Sci Technol, 2003, 23(4): 214-223, 233. | |
50 | 张牡丹, 张丽娟, 刘关, 等. 液膜分离技术及其应用研究进展[J]. 化学世界, 2015, 56(8): 506-512. |
ZHANG M D, ZHANG L J, LIU G, et al. Research progress of liquid membrane separation technology and its application[J]. Chem World, 2015, 56(8): 506-512. | |
51 | 胡筱敏, 周宁, 欧云川, 等. 乳状液膜法治理草甘膦废水[J]. 环境工程, 2012, 30(3): 34-37. |
HU X M, ZHOU N, OU Y C, et al. Treatment of glyphosate wastewater by emulsion liquid membrane method[J]. Environ Eng, 2012, 30(3): 34-37. | |
52 | 刘艳. 乳状液膜法处理草甘膦生产废水[J]. 精细与专用化学品, 2017, 25(5): 24-28. |
LIU Y. Treatment of glyphosate production wastewater by emulsion liquid membrane method[J]. Fine Spec Chem, 2017, 25(5): 24-28. | |
53 | DZYGIEL P, WIECZOREK P. Extraction of glyphosate by a supported liquid membrane technique-science direct[J]. J Chromatogr A, 2000, 889(1/2): 93-98. |
54 | PIRIYAPITTAYA M, JAYANTA S, MITRA S, et al. Micro-scale membrane extraction of glyphosate and aminomethylphosphonic acid in water followed by high-performance liquid chromatography and post-column derivatization with fluorescence detector[J]. J Chromatogr A, 2008, 1189(1/2): 483-492. |
55 | SEE H H, STRATZ S, HAUSER P C. Electro-driven extraction across a polymer inclusion membrane in a flow-through cell[J]. J Chromatogr A, 2013, 1300(14): 79-84. |
56 | WANG D, LIU J, CHEN J, et al. New insights into the interfacial behavior and swelling of polymer inclusion membrane (PIM) during Zn(II) extraction process[J], Chem Eng Sci, 2020, 220: 115-620. |
57 | WANG D, HU J, LI Y, et al. Evidence on the 2-nitrophenyl octyl ether (NPOE) facilitating copper(II) transport through polymer inclusion membranes[J]. J Membr Sci, 2016, 501: 228-235. |
58 | WANG D, CATTRALL R W, LI J, et al. A poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membrane (PIM) containing LIX84I for the extraction and transport of Cu(II) from its ammonium sulfate/ammonia solutions[J]. J Membr Sci Ence, 2017: 272-279. |
59 | WANG D, CATTRALL R W, LI J, et al. A comparison of the use of commercial and diluent free LIX84I in poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membranes for the extraction and transport of Cu(II)[J]. Sep Purif Technol, 2018, 202: 59-66. |
60 | WANG D, HU J, LIU D, et al. Selective transport and simultaneous separation of Cu(II), Zn(II) and Mg(II) using a dual polymer inclusion membrane system[J]. Membr Sci, 2017, 524: 205-213. |
61 | 陆雅萌, 王建英, 王朵, 等. 聚合物包容膜及其在萃取分离中的研究进展[J]. 膜科学与技术, 2020, 40(5): 136-143. |
LU Y M, WANG J Y, WANG D, et al. Polymer inclusion membranes and their research progress in extraction separation[J]. Membr Sci Technol, 2020, 40(5): 136-143. |
[1] | 邢思阳, 于飞, 马杰. 电容去离子过渡金属基电极设计及应用研究进展[J]. 应用化学, 2023, 40(9): 1215-1232. |
[2] | 王梦瑶, 高美珍, 石琪, 董晋湘. 基于甲苯模板合成的ZIF-93及其对1,3-丙二醇和2,3-丁二醇的吸附分离性能[J]. 应用化学, 2023, 40(9): 1302-1311. |
[3] | 汤振春, 周新全, 王佩佩, 苗娟, 张宁, 张瑞昌, 魏学锋. MOFs基催化剂活化过硫酸盐在废水处理中的研究进展[J]. 应用化学, 2023, 40(7): 938-950. |
[4] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[5] | 郝晨丽, 丁庆伟, 贾世昌, 毛泱博, 王松柏, 马骏. 硫辛酸修饰钛酸纳米管吸附亚甲基蓝的性能[J]. 应用化学, 2023, 40(5): 749-757. |
[6] | 赵金丽, 于宗仁, 苏伯民. 墓葬壁画中蛋清胶结材料的热裂解-气质联用分析[J]. 应用化学, 2023, 40(4): 562-570. |
[7] | 熊波, 黎泰华, 周武平, 刘长宇, 徐晓龙. 一步热聚合法制备Cu2O/CuO-g-C3N4吸附剂及其对甲基橙吸附的性能[J]. 应用化学, 2023, 40(3): 420-429. |
[8] | 王华宇, 张超, 陈柯铭, 葛明. 金属-有机框架MIL-88A(Fe)及其复合材料在水处理中的研究进展[J]. 应用化学, 2023, 40(2): 155-168. |
[9] | 张琴, 刘文彬, 樊利娇, 谢宇铭, 黄国林. 功能化介孔二氧化硅的制备及其吸附分离水中铀的研究进展[J]. 应用化学, 2023, 40(2): 169-187. |
[10] | 潘阳, 鲁惠玲, 李浩, 潘建明. 贵金属离子印迹聚合物的制备及其应用的研究进展[J]. 应用化学, 2023, 40(10): 1359-1375. |
[11] | 赵跃华, 王大鹏. 氨基化氧化石墨烯和脂肪酸在水-油界面的共吸附动力学[J]. 应用化学, 2022, 39(8): 1274-1284. |
[12] | 曹从军, 马含笑, 侯成敏, 丁小健, 管飙. 乙基纤维素磁性复合材料对溶液中铜离子的吸附性能[J]. 应用化学, 2022, 39(6): 969-979. |
[13] | 薛松松, 解正峰, 何佳伟, 张天怡, 夏保平, 李雨芹. 高选择性快速识别汞(Ⅱ)离子的磺酰腙型探针的合成及在吸附中的应用[J]. 应用化学, 2022, 39(5): 760-768. |
[14] | 王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628. |
[15] | 张健爽, 高美珍, 王梦瑶, 石琪, 董晋湘. 沸石咪唑酯骨架结构材料ZIF-71用于低浓度生物基2,3-丁二醇/1,3-丙二醇的吸附分离性能[J]. 应用化学, 2022, 39(11): 1735-1745. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||