应用化学 ›› 2023, Vol. 40 ›› Issue (5): 758-768.DOI: 10.19894/j.issn.1000-0518.230002
• 研究论文 • 上一篇
方愈1,2, 况王强2, 邝圣庭2,3(), 廖伍平1,2,3()
收稿日期:
2023-01-08
接受日期:
2023-03-27
出版日期:
2023-05-01
发布日期:
2023-05-26
通讯作者:
邝圣庭,廖伍平
基金资助:
Yu FANG1,2, Wang-Qiang KUANG2, Sheng-Ting KUANG2,3(), Wu-Ping LIAO1,2,3()
Received:
2023-01-08
Accepted:
2023-03-27
Published:
2023-05-01
Online:
2023-05-26
Contact:
Sheng-Ting KUANG,Wu-Ping LIAO
About author:
wpliao@gia.cas.cnSupported by:
摘要:
助浸剂NaCl可提高硫酸在常温常压下浸取低品位复杂铜矿时铜的浸出率,但也形成了含铜的混酸溶液。二(2-乙基己基)-(N-(2-乙基己基)氨基)甲基膦酸酯(Cextrant 230)对混酸(H2SO4+HCl)溶液中Cu2+、Fe3+、Co2+、Mg2+和Al3+的萃取行为进行了研究。结果表明, Cextrant 230对混酸溶液中的Cu2+和Fe3+具有良好的萃取能力和选择性,而对Co2+、Mg2+和Al3+的萃取能力较弱; Cl-可促进Cu2+的萃取,而SO
中图分类号:
方愈, 况王强, 邝圣庭, 廖伍平. Cextrant 230从低品位铜矿H2SO4-NaCl浸出液中选择性提取回收铜[J]. 应用化学, 2023, 40(5): 758-768.
Yu FANG, Wang-Qiang KUANG, Sheng-Ting KUANG, Wu-Ping LIAO. Selective Extraction and Recovery of Copper from the Leaching of Low-grade Copper Ore by H2SO4-NaCl Solution Using Cextrant 230[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 758-768.
图1 平衡pH值对Cextrant 230从单一溶液(A)和混合溶液(B)中萃取Cu2+、Fe3+、Co2+、Mg2+和Al3+的影响
Fig.1 Effect of the equilibrium pH on the extraction of Cu2+, Fe3+, Co2+, Mg2+and Al3+ from the single solutions (A) and mixed solutions (B)Note:c(Cextrant 230)=0.10 mol/L, ρ(Cl-)=20 g/L; A. c(Mn+)=0.01 mol/L; B. c(Mn+)=0.002 mol/L
pHe | β | ||
---|---|---|---|
0.66 | 8.44 | 2.78 | 2.29 |
1.41 | 4.00 | 1.17 | 2.38 |
2.34 | 14.3 | 1.08 | 2.89 |
2.52 | 7.53 | 4.25 | 2.20 |
2.86 | 16.6 | 61.2 | 6.75 |
表1 不同酸度下Cu2+与Fe3+、Mg2+和Co2+间的分离系数(β)
Table 1 Separation factors (β) between copper and other metal cations at different acidities
pHe | β | ||
---|---|---|---|
0.66 | 8.44 | 2.78 | 2.29 |
1.41 | 4.00 | 1.17 | 2.38 |
2.34 | 14.3 | 1.08 | 2.89 |
2.52 | 7.53 | 4.25 | 2.20 |
2.86 | 16.6 | 61.2 | 6.75 |
图2 Cl-对混合金属离子萃取的影响(A); SO42-和HSO4-对Cu2+萃取的影响(B)
Fig.2 Effect of the Cl- (A), SO42- and HSO4- (B) concentration on the extraction of metal cationsNote:c(Cextrant 230)=0.10 mol/L, initial pH=1.16; A: c(Mn+)=0.002 mol/L; B: c(Cu2+)=0.01 mol/L, ρ(Cl-)=20 g/L
ρ(Cl-)/(g·L-1) | β | ||
---|---|---|---|
10 | 33.3 | 4.62 | 8.53 |
20 | 18.8 | 7.21 | 12.3 |
30 | 12.8 | 12.7 | 16.1 |
表2 不同氯离子浓度下Cu2+与Fe3+、Mg2+、Co2+间的分离系数(β)
Table 2 Separation factors (β) between copper and other metal cations at different chloride concentrations
ρ(Cl-)/(g·L-1) | β | ||
---|---|---|---|
10 | 33.3 | 4.62 | 8.53 |
20 | 18.8 | 7.21 | 12.3 |
30 | 12.8 | 12.7 | 16.1 |
图3 Cextrant 230浓度(A)和两相体积比(B)对金属离子萃取的影响
Fig.3 Effect of the Cextrant 230 concentration on the extraction of metal cationsNote:c(Mn+)=0.002 mol/L, ρ(Cl-)=20 g/L, initial pH=1.16; A. V(Organic phase)∶V(Aqueous phase)=1∶1; B. c(Cextrant 230)=0.10 mol/L
Organic phase/Aqueous phase | β | ||
---|---|---|---|
3/1 | 59.2 | 19.9 | 137 |
2/1 | 14.5 | 10.0 | 68.4 |
1/1 | 6.43 | 4.13 | 20.6 |
表3 不同相比下Cu2+与其它混合金属离子的分离因子(β)
Table 3 Separation factors (β) between copper and other mixed metal ions at different organic/aqueous phase ratios
Organic phase/Aqueous phase | β | ||
---|---|---|---|
3/1 | 59.2 | 19.9 | 137 |
2/1 | 14.5 | 10.0 | 68.4 |
1/1 | 6.43 | 4.13 | 20.6 |
T/K | E/% | lg Kex | ΔG/(kJ·mol-1) | ΔH/(kJ·mol-1) | ΔS/(J·mol-1·K-1) |
---|---|---|---|---|---|
298 | 89.2 | 7.91 | -45.2 | -39.8±0.07 | 17.9 |
303 | 86.7 | 7.81 | -45.3 | 18.1 | |
308 | 82.6 | 7.68 | -45.3 | 17.8 | |
313 | 78.5 | 7.56 | -45.3 | 17.6 | |
318 | 74.4 | 7.46 | -45.4 | 17.6 | |
323 | 70.7 | 7.38 | -45.7 | 18.0 |
表4 Cextrant 230萃取Cu2+的热力学参数
Table 4 Thermodynamic parameters of Cu2+ extraction with Cextrant 230
T/K | E/% | lg Kex | ΔG/(kJ·mol-1) | ΔH/(kJ·mol-1) | ΔS/(J·mol-1·K-1) |
---|---|---|---|---|---|
298 | 89.2 | 7.91 | -45.2 | -39.8±0.07 | 17.9 |
303 | 86.7 | 7.81 | -45.3 | 18.1 | |
308 | 82.6 | 7.68 | -45.3 | 17.8 | |
313 | 78.5 | 7.56 | -45.3 | 17.6 | |
318 | 74.4 | 7.46 | -45.4 | 17.6 | |
323 | 70.7 | 7.38 | -45.7 | 18.0 |
图5 Cextrant 230对Cu2+的饱和负载(A)和负载有机相中Cu2+的反萃(B)
Fig.5 Loading capacity of Cu2+ by Cextrant 230 (A) and stripping of the loaded Cu2+ by different inorganic acidsNote: A. c(Cextrant 230)=0.60 mol/L, c(Cu2+)=0.21 mol/L, ρ(Cl-)=20 g/L, initial pH=1.16; B. 0.60 mol/L Cextrant 230 loaded 13.1 g/L Cu2+
Element | Feed (F1)/(mg·L-1) | Raffinate after removing Fe (F2)/(mg·L-1) | Raffinate after extracting Cu (R)/(mg·L-1) |
---|---|---|---|
Cu(Ⅱ) | 17 961 | 17 690 | 0.2 |
Co(Ⅱ) | 4 480 | 4 380 | 3 170 |
Mg(Ⅱ) | 2 190 | 2 100 | 1 570 |
Al(Ⅲ) | 550 | 540 | 0.1 |
Fe(Ⅲ) | 650 | 32 | <0.1 |
表5 混酸溶液萃取前后的成分及含量
Table 5 The composition of the mixed solutions before and after extraction
Element | Feed (F1)/(mg·L-1) | Raffinate after removing Fe (F2)/(mg·L-1) | Raffinate after extracting Cu (R)/(mg·L-1) |
---|---|---|---|
Cu(Ⅱ) | 17 961 | 17 690 | 0.2 |
Co(Ⅱ) | 4 480 | 4 380 | 3 170 |
Mg(Ⅱ) | 2 190 | 2 100 | 1 570 |
Al(Ⅲ) | 550 | 540 | 0.1 |
Fe(Ⅲ) | 650 | 32 | <0.1 |
System | Parameters |
---|---|
Organic phase (S1) | 0.80 mol/L Cextrant 230 |
Feed (F1) | given in |
Organic phase (S2) | 0.20 mol/L Cextrant 230 |
Feed (F2) | given in |
Scrubbing regent (W) | 2.7 mol/L NaCl |
Strippant (St) | 8.5 % Na2CO3(mass percent) |
Volume ratio (S2∶F2∶W∶St) | 10∶2.5∶1∶10 |
Extraction stages | 4 |
Scrubbing stages | 1 |
Stripping stages | 3 |
表6 从混酸溶液中萃取回收Cu2+的实验参数
Table 6 The parameters for the extraction and separation of copper from mixed solution
System | Parameters |
---|---|
Organic phase (S1) | 0.80 mol/L Cextrant 230 |
Feed (F1) | given in |
Organic phase (S2) | 0.20 mol/L Cextrant 230 |
Feed (F2) | given in |
Scrubbing regent (W) | 2.7 mol/L NaCl |
Strippant (St) | 8.5 % Na2CO3(mass percent) |
Volume ratio (S2∶F2∶W∶St) | 10∶2.5∶1∶10 |
Extraction stages | 4 |
Scrubbing stages | 1 |
Stripping stages | 3 |
1 | INDA N I, FUKUMARU M, SANA T, et al. Characteristic and mechanism of Cu(Ⅱ) extraction with polymeric particle with interconnected spherical pores impregnating with LIX84-I[J]. J Chem Eng Jpn, 2017, 50(2): 102-110. |
2 | TANG X Q, HU Z S, WANG Z, et al. ITO/Cu multilayer electrodes for high-brightness electrochromic displays[J]. eScience, 2022, 2(5): 453-566. |
3 | KHARADE S B, CHOUGALE R K, BARACHE U B, et al. Design and optimization of sensitive analytical spectrophotometric method for micro determination of copper(Ⅱ) from e-waste by using of novel chromogenic extractant[J]. Spectrochim Acta A, 2022, 267(1): 120502. |
4 | MOHANRAJ G T, RAHMAN M R, ARYA S B, et al. Characterization study and recovery of copper from low grade copper ore through hydrometallurgical route[J]. Adv Powder Technol, 2022, 33(1): 103382. |
5 | HERREROS O, VIÑALS J. Leaching of sulfide copper ore in a NaCl-H2SO4-O2 media with acid pre-treatment[J]. Hydrometallurgy, 2007, 89(3/4): 260-268. |
6 | KOWALCZUK P B, MANAIG D O, DRIVENES K, et al. Galvanic leaching of seafloor massive sulphides using MnO2 in H2SO4-NaCl media[J]. Minerals-Basel, 2018, 8(6): 235. |
7 | SINHA M K, SAHU S K, PRAMANIK S, et al. Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction[J]. Hydrometallurgy, 2016, 165(1): 182-190. |
8 | NAVARRO P, ALGUACIL F J. Technical note extraction of copper from sulphate solutions by LIX 864 in escaid 100[J]. Miner Eng, 1999, 12(3): 323-327. |
9 | MAHMOUDI A, SHAKIBANIA S, REZAEE S, et al. Effect of the chloride content of seawater on the copper solvent extraction using Acorga M5774 and LIX 984N extractants[J]. Sep Purif Technol, 2020, 251(15): 117394. |
10 | SHAKIBANIA S, MAHMOUDI A,MOKMELI M, et al. The effect of chloride ions on copper solvent extraction from sulfate-chloride medium using LIX 984N[J]. Miner Eng, 2020, 156(1): 106498. |
11 | ELIZALDE M P, RÚA M S, MENOYO B, et al. Solvent extraction of copper from acidic chloride solutions with LIX84[J]. Hydrometallurgy, 2019, 183: 213-220. |
12 | OCIO A, ELIZALDE M, PRIEYO J A. Determination of 5-dodecylsalicylaldoxime and 5-nonylsalicylaldoxime in commercial extractants by high-performance liquid chromatography with photometric detection[J]. J Chromatography A, 2004, 1032 (1/2): 129-133. |
13 | LI N N, CAHN R P, NADEN D, et al. Liquid membrane processes for copper extraction[J]. Hydrometallurgy, 1983, 9(3): 277-305. |
14 | 李亚栋, 王华, 郑化桂. 7804螯合萃取剂对铜铁钴镍萃取性能的研究[J]. 化学世界, 1994, 35(3): 130-132. |
LI Y D, WANG H, ZHENG H G. Study on extraction performance of 7804 chelating extractant for copper, iron, cobalt and nickel[J]. Chem World, 1994, 35(3): 130-132. | |
15 | 陈星, 徐庆仁, 盛志初. 2-羟基-5-(1-甲庚基)苯甲醛肟(N-590)和2-羟基-5-(1-甲庚基)二苯甲酮(N-510)的混合物萃取铜的性能研究[J]. 化工冶金, 1992, 13(4): 297-301. |
CHEN X, XU Q R, SHENG Z C. Study on the extraction performance of copper by the mixture of 2-hydroxy-5-(1-methylheptyl) benzaldoxime (N-590) and 2-hydroxy-5-(1-methylheptyl) benzophenone (N-510)[J]. Chem Metall, 1992, 13(4): 297-301. | |
16 | 李广胜. 综合利用酸性废水浸出含铜废石的分析[J]. 有色矿山, 1995(4): 57-61. |
LI G S. Analysis of leaching copper bearing waste rock by comprehensive utilization of acidic wastewater[J]. Nonferrous Mine, 1995(4): 57-61. | |
17 | 王红鹰, 郑伟, 任致伟, 等. 铜萃取剂KM 的萃取性能研究[J]. 湿法冶金, 2003, 22(1):45-48. |
WANG H Y, ZHENG W, REN Z W, et al. Study on extraction performance of copper extractant KM[J]. Hydrometallurgy, 2003, 22(1): 45-48. | |
18 | 李绍民, 陈述一, 宋庆福, 等. BK系列铜萃取剂萃取性能的试验研究[J]. 有色金属(冶炼部分), 2000(2): 1-4. |
LI S M, CHEN S Y, SONG Q F, et al. Experimental study on extraction performance of BK series copper extractants[J]. Non Ferrous Met (Smelting Part), 2000(2): 1-4. | |
19 | 王正达, 马鲁铭, 朱萍, 等. 新铜萃取剂萃取盐酸介质中铜的实验研究[J]. 稀有金属, 2005, 29(6): 944-947. |
WANG Z D, MA L M, ZHU P, et al. Experimental study on extraction of copper from hydrochloric acid with new copper extractant[J]. Rare Met, 2005, 29(6): 944-947. | |
20 | 张宁, 许修远, 徐雨晴, 等. 从含铜颜料污泥浸出液中回收铜的工艺研究[J]. 广东化工, 2019, 46(14): 6-7. |
ZHANG N, XU X Y, XU Y Q, et al. Study on the process of recovering copper from the leaching solution of copper containing pigment sludge[J]. Guangdong Chem, 2019, 46(14): 6-7. | |
21 | 徐志刚, 邹潜, 汤启明. 金属萃取剂Mexteal 84H萃取铜的性能研究[J]. 湿法冶金, 2012, 31(4): 224-226. |
XU Z G, ZOU Q, TANG Q M. Research on properties of Mextral 84H metal extractant for extraction copper[J]. Hydrometallurgy China, 2012, 31(4): 224-226. | |
22 | 汤启明, 徐志刚, 李健, 等. 金属萃取剂Mextral CLX-50的合成和萃取铜的性能研究[J]. 湿法冶金, 2013, 32(3): 181-183. |
TANG Q M, XU Z G, LI J, et al. Synthesis of Mextral CLX-50 and its performance for extraction copper[J]. Hydrometallurgy China, 2013, 32(3): 181-183. | |
23 | 朱萍, 王正达, 袁媛, 等. N902萃取铜的选择性研究[J]. 稀有金属, 2006, 30(4): 484-489. |
ZHU P, WANG Z D, YUAN Y, et al. Study on the selectivity of copper extraction with N902[J]. Rare Met, 2006, 30(4): 484-489. | |
24 | 谢晓峰, 李磊, 王飞, 等. 铜渣氯化烟尘中铜的湿法回收[J]. 过程工程学报, 2015, 15(3): 424-429. |
XIE X F, LI L, WANG F, et al. Wet recovery of copper from chlorinated dust of copper slag[J]. Chin J Proc Eng, 2015, 15(3): 424-429. | |
25 | 康立武, 王青云, 邹燕飞, 等. 用N902萃取废印刷线路板浸出液中的铜[J]. 有色金属(冶炼部分), 2015(10): 30-33. |
KANG L W, WANG Q Y, ZHOU Y F, et al. Extraction of copper from waste PCB leaching olution with N902[J]. Non Ferrous Met (smelting part), 2015(10): 30-33. | |
26 | 杨佳棋, 李立清, 冯罗, 等. 铜离子萃取剂的研究进展[J]. 电镀与涂饰, 2020, 39(9): 577-585. |
YANG J Q, LI L Q, FENG L, et al. Research progress of copper ion extractant[J]. Electroplating Finish, 2020, 39(9): 577-585. | |
27 | BABA A A, AYINLA K I, ADEKOLA F A, et al. Extraction and purification of copper from a nigerian chalcopyrite ore leach liquor by dithizone in kerosene[J]. Solvent Extr Res Dev, 2015, 22(2): 135-146. |
28 | ZHANG P W, INOUE K, YOSHIZUKA K, et al. Extraction and selective stripping of molybdenum(Ⅵ) and vanadium(Ⅳ) from sulfuric acid solution containing aluminum(Ⅲ), cobalt(Ⅱ), nickel(Ⅱ) and iron(Ⅲ) by LIX 63 in Exxsol D80[J]. Hydrometallurgy, 1996, 41(1): 45-53. |
29 | 王雨琦. Cu萃取剂的发展与应用[J]. 甘肃科技, 2012, 28 (16): 23-27. |
WANG Y Q. Development and application of Cu extractants[J]. Gansu Sci Technol, 2012, 28(16): 23-27. | |
30 | 马田, 魏添昱. 重金属离子萃取剂的研究进展[J]. 江西化工, 2015(5): 25-30. |
MA T, WEI T Y. Research progress of heavy metal ion extractants[J]. Jiangxi Chem, 2015(5): 25-30. | |
31 | 吴华武, 滕藤. 混酸介质中用N235萃取镍、钴、铜的分配模型研究[J]. 化工学报, 1987, 38(1): 119-123. |
WU H W, TENG T. Study on the distribution model of nickel, cobalt and copper extraction with N235 in mixed acid medium[J]. J Chem Eng, 1987, 38(1): 119-123. | |
32 | 李巧云, 牛洪波. 用N235从H2SO4-HCl混酸溶液中萃取铜(Ⅱ)的研究[J]. 山东化工, 1995, 1: 29-31. |
LI Q Y, NIU H B. Study on extraction of copper(Ⅱ) from H2SO4-HCl mixed acid solution with N235[J]. Shandong Chem, 1995, 1: 29-31. | |
33 | BOROWIAK-RESTERNA A. Extraction of copper from acid chloride solutions by N-alkyl- and N,N-dialkyl-3-pyridinecarboxamides[J]. Solvent Extr Ion Exc, 1994, 12(3): 557-569. |
34 | KUANG S T, LIAO W P. Progress in the extraction and separation of rare earths and related metals with novel extractants: a review[J]. Sci China Technol Sc, 2018, 61(9): 59-68. |
35 | 李艳玲, 邝圣庭, 廖伍平. Cextrant 230/二异辛基琥珀酸酯磺酸钠/正庚烷反相微乳液萃取钍[J]. 应用化学, 2022, 39(12): 1927-1936. |
LI Y L, KUANG S T, LIAO W P. Extraction of thorium(Ⅳ) using Cextrant 230/AOT/n-heptane microemulsion[J]. Chin J Appl Chem, 2022, 39(12): 1927-1936. | |
36 | 廖伍平, 邝圣庭, 吴国龙, 等. 含氨基中性膦萃取剂萃取回收铜的用途和方法: 中国, 201710904948.3[P]. 2018-02-09. |
LIAO W P, KUANG S T, WU G L, et al. Application and method of recovering copper by extraction with neutral phosphine containing amino group: CN, 201710904948.3[P]. 2018-02-09. | |
37 | WANG Y J, ZHANG Z F, KUANG S T, et al. Selective extraction and recovery of copper from chloride solution using Cextrant 230[J]. Hydrometallurgy, 2018, 181: 16-20. |
38 | ZHOU X K, ZHANG Z F, KUANG S T, et al. Recovery of Ga(Ⅲ) from chloride solutions by solvent extraction with Cextrant 230[J]. Hydrometallurgy, 2019, 185: 76-81. |
39 | YANG X J, ZHANG Z F, KUANG S T, et al. Removal of thorium and uranium from leach solutions of ion-adsorption rare earth ores by solvent extraction with Cextrant 230[J]. Hydrometallurgy, 2020, 194: 105343. |
40 | 徐光宪. 稀土[M]. 第二版. 北京: 冶金工业出版社, 1995: 486-489. |
XU G X. Rare earths[M]. Beijing: Metallurgical Industry Press, 1995: 486-489. | |
41 | WANG W W, WANG X L, MENG S L, et al. Extraction and stripping of ytterbium(Ⅲ) from H2SO4 medium by Cyanex 923[J]. J Rare Earths, 2006, 24(6): 685-689. |
42 | 苏杰, 况王强, 邝圣庭, 等. Cextrant 230对氟碳铈矿盐酸优浸液中钍和铁的选择性去除[J]. 中国稀土学报, 2023, 41(1): 178-186. |
SU J, KUANG W Q, KUANG S T, et al. Selective removal of thorium and iron from the selective hydrochloric acid leach solution of bastnaesite by solvent extraction using Cextrant 230[J]. J Chin Rare Earths Soc, 2023, 41(1): 178-186. |
[1] | 熊波, 黎泰华, 周武平, 刘长宇, 徐晓龙. 一步热聚合法制备Cu2O/CuO-g-C3N4吸附剂及其对甲基橙吸附的性能[J]. 应用化学, 2023, 40(3): 420-429. |
[2] | 徐凤州, 唐华英, 刘吴荟, 江怡凤, 李文凯, 陆献海. 水体中铜离子的现场可视化半定量快速检测[J]. 应用化学, 2022, 39(8): 1303-1311. |
[3] | 刘盛杰, 叶永杰, 刘银怡, 林淑满, 谢浩源, 刘文婷, 许伟钦. 基于泡沫铜的多孔碳均匀负载Cu3P纳米颗粒的制备及其光催化降解染料性能[J]. 应用化学, 2022, 39(7): 1090-1097. |
[4] | 周友三, 张毅城, 吴思宇, 查飞, 陈德军, 常玥. 铜掺杂钙铝水滑石催化氧化异丙苯制备异丙苯过氧化氢[J]. 应用化学, 2022, 39(6): 941-948. |
[5] | 齐海燕, 张琛琪, 李金龙, 李军. 氮硫掺杂碳点的制备及检测铜离子[J]. 应用化学, 2022, 39(6): 980-989. |
[6] | 袁定坤, 褚维凡, 倪加惠. 亚铁氰化铜-聚丙烯酰胺/羧甲基纤维素/石墨烯复合水凝胶的制备及铷吸附性能[J]. 应用化学, 2022, 39(11): 1746-1756. |
[7] | 刘琳, 何华锋. 聚醚胺表面活性剂在铜阻挡层抛光中的应用[J]. 应用化学, 2022, 39(10): 1579-1585. |
[8] | 闫宇飞, 陈继, 李凯, 邹丹, 李德谦. 含氟硫酸介质中伯胺N1923对Ce(Ⅳ)的萃取[J]. 应用化学, 2022, 39(02): 307-314. |
[9] | 张红彦, 杨孟芝, 姜春勇, 蔡小华. 醋酸铜催化硝基芳烃的还原甲酰化:一种简便价廉的甲酰胺合成策略[J]. 应用化学, 2021, 38(12): 1632-1638. |
[10] | 李叶惠, 李晓宁, 惠伟, 王祥, 王海军. 低共熔溶剂/表面活性剂体系分离纯化黄芩苷[J]. 应用化学, 2021, 38(12): 1647-1654. |
[11] | 蔡志锋, 武亮亮, 戚凯飞, 邓晨华, 张申, 张彩凤. 脯氨酸保护的铜纳米团簇的制备及其在三硝基苯酚检测中的应用[J]. 应用化学, 2021, 38(1): 107-115. |
[12] | 张申, 郭玉玉. 一锅法合成聚乙烯吡咯烷酮修饰的铜纳米团簇用于槲皮素的检测[J]. 应用化学, 2020, 37(9): 1069-1075. |
[13] | 阳征斐, 陈友顺, 张豪杰, 刘志雄, 颜文斌, 李飞. “抑制-萃取”法从含铁酸溶液中选择性提钒[J]. 应用化学, 2020, 37(7): 803-809. |
[14] | 蔡志锋, 陈思颖, 庞姝琳, 宋爽, 贾康, 毛钰瑾, 田芳, 张彩凤. 2-巯基苯并咪唑保护的铜纳米团簇的制备及银离子检测[J]. 应用化学, 2020, 37(5): 587-594. |
[15] | 张天永, 任忠静, 李彬, 姜爽, 史继星, 石志强, 吕东军. C.I.颜料红177中间体的制备工艺改进[J]. 应用化学, 2020, 37(4): 433-439. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||