应用化学 ›› 2023, Vol. 40 ›› Issue (5): 749-757.DOI: 10.19894/j.issn.1000-0518.220406
郝晨丽1, 丁庆伟1, 贾世昌1, 毛泱博2, 王松柏3, 马骏1()
收稿日期:
2022-12-16
接受日期:
2023-03-28
出版日期:
2023-05-01
发布日期:
2023-05-26
通讯作者:
马骏
作者简介:
第一联系人:共同第一作者
基金资助:
Chen-Li HAO1, Qing-Wei DING1, Shi-Chang JIA1, Yang-Bo MAO2, Song-Bai WANG3, Jun MA1()
Received:
2022-12-16
Accepted:
2023-03-28
Published:
2023-05-01
Online:
2023-05-26
Contact:
Jun MA
About author:
junma0888@tyust.edu.cnSupported by:
摘要:
在水热法制备钛酸纳米管(Titanate nanotubes,TNTs)的基础上,再通过浸渍法将硫辛酸(Lipoic acid,LA)修饰到钛酸纳米管上,得到硫辛酸修饰的钛酸纳米管(TNTs-LA)。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、X光电子能谱仪(XPS)和傅里叶变换红外光谱(FT-IR)等仪器对材料进行表征,并以亚甲基蓝(MB)的吸附实验评价其吸附性能。结果表明,TNTs-LA对MB的吸附主要集中于前30 min,60 min可达吸附平衡。MB的去除与溶液pH值有关,且符合二级反应动力学方程,吸附过程是一个多种机制共同作用的结果。Langmuir等温模型拟合得出TNTs-LA对MB的最大吸附量为216.98 mg/g,有较高的吸附能力。
中图分类号:
郝晨丽, 丁庆伟, 贾世昌, 毛泱博, 王松柏, 马骏. 硫辛酸修饰钛酸纳米管吸附亚甲基蓝的性能[J]. 应用化学, 2023, 40(5): 749-757.
Chen-Li HAO, Qing-Wei DING, Shi-Chang JIA, Yang-Bo MAO, Song-Bai WANG, Jun MA. Adsorption of Methylene Blue on Titanate Nanotubes Modified with Lipoic Acid[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 749-757.
Kinetic models | Pseudo first order kinetic moder | Pseudo second order kinetic moder | |||||
---|---|---|---|---|---|---|---|
Parameters | qe,cal/(mg·g-1) | k1/min-1 | r2 | qe,cal/(mg·g-1) | k2/(g·mg-1·min-1) | r2 | qe,exp/(mg·g-1) |
MB | 150.75 | 0.065 | 0.956 9 | 162.23 | 5.86×10-4 | 0.984 7 | 161.07 |
表1 TNTS-LA吸附MB动力学参数
Table 1 Kinetic parameters for adsorption of MB by TNTs-LA
Kinetic models | Pseudo first order kinetic moder | Pseudo second order kinetic moder | |||||
---|---|---|---|---|---|---|---|
Parameters | qe,cal/(mg·g-1) | k1/min-1 | r2 | qe,cal/(mg·g-1) | k2/(g·mg-1·min-1) | r2 | qe,exp/(mg·g-1) |
MB | 150.75 | 0.065 | 0.956 9 | 162.23 | 5.86×10-4 | 0.984 7 | 161.07 |
Isotherm models | Langmuir model | Freundlich model | ||||
---|---|---|---|---|---|---|
Parameters | Q/(mg·g-1) | b/(L·mg-1) | r2 | KF/(mg·g-1) | n | r2 |
MB | 216.98 | 3.51 | 0.975 8 | 136.36 | 0.16 | 0.846 9 |
表2 TNTs-LA吸附亚甲基蓝的等温吸附模型参数
Table 2 Isotherm model parameters for adsorption of MB by TNTs-LA
Isotherm models | Langmuir model | Freundlich model | ||||
---|---|---|---|---|---|---|
Parameters | Q/(mg·g-1) | b/(L·mg-1) | r2 | KF/(mg·g-1) | n | r2 |
MB | 216.98 | 3.51 | 0.975 8 | 136.36 | 0.16 | 0.846 9 |
Materials | TNTs-LA | TNTs[ | Jordanian diatomite[ | Natural zeolite[ | Apricot stone[ |
---|---|---|---|---|---|
MB saturation adsorption/(mg·g-1) | 216.98 | 133.33 | 143.3 | 63.2 | 55.0 |
表3 不同材料对MB的吸附容量
Table 3 Adsorption capacity of MB by different materials
Materials | TNTs-LA | TNTs[ | Jordanian diatomite[ | Natural zeolite[ | Apricot stone[ |
---|---|---|---|---|---|
MB saturation adsorption/(mg·g-1) | 216.98 | 133.33 | 143.3 | 63.2 | 55.0 |
1 | NITHYA R, THIRUNAVUKKARASU A, SATHYA A, et al. Magnetic materials and magnetic separation of dyes from aqueous solutions: a review[J]. Environ Chem Lett, 2021, 19(2): 1275-1294. |
2 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013(1): 84-94. |
REN N Q, ZHOU X J, GUO W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC J, 2013(1): 84-94. | |
3 | 訾洛阳, 丁志斌. 印染废水脱色研究进展[J]. 给水排水, 2008(S1): 5. |
ZI L Y, DING Z B. Research progress on decolorization of printing and dyeing wastewater[J]. Water Wastewater Eng, 2008(S1): 5. | |
4 | 袁思杰, 张芮铭. 染料废水处理技术研究进展[J]. 染料与染色, 2022(4): 59. |
YUAN S J, ZHANG R M. Research progress of dye wastewater treatment technology[J]. Dyestuffs Color, 2022(4): 59. | |
5 | 孙怡. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 14. |
SU Y. Study on the adsorption properties of methylene blue dye on oat straw treated with different acids[J]. CIESC J, 2017, 68(5): 14. | |
6 | ES A, RE A, YK A, et al. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water[J]. Mater Today Chem, 2020, 16: 100233. |
7 | SONG L, CAO L, LI J, et al. Lead titanate nanotubes synthesized via ion-exchange method: characteristics and formation mechanism[J]. J Alloy Compd, 2011, 509(20): 6061-6066. |
8 | HINOJOSA-REYES M, CAMPOSECO-SOLIS R, RUIZ F. H2Ti3O7 titanate nanotubes for highly effective adsorption of basic fuchsin dye for water purification[J]. Micropor Mesopor Mat, 2018, 276: 183-191. |
9 | LEE C K, LIU S S, JUANG L C, et al. Application of titanate nanotubes for dyes adsorptive removal from aqueous solution[J]. J Hazard Mater, 2007, 148(3): 756-760. |
10 | LIU W, WANG T, BORTHWICK A G L, et al. Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: competition and effect of inorganic ions[J]. Sci Total Environ, 2013, 456/457: 171-180. |
11 | LIU W, ZHAO X, WANG T, et al. Adsorption of U(Ⅵ) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter[J]. Chem Eng J, 2016, 286: 427-435. |
12 | YANG D, SARINA S, ZHU H, et al. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes[J]. Angew Chem Int Ed, 2011, 50(45): 10594-10598. |
13 | JI H, WANG T, HUANG T, et al. Adsorptive removal of ciprofloxacin with different dissociated species onto titanate nanotubes[J]. J Clean Prod, 2021, 278: 123924. |
14 | XU X, LIU Y, WANG T, et al. Co-adsorption of ciprofloxacin and Cu(Ⅱ) onto titanate nanotubes: speciation variation and metal-organic complexation[J]. J Mol Liu, 2019, 292: 111375. |
15 | 张兴堂, 王玉梅, 张春梅, 等. 钛酸纳米管的化学修饰及发光性能的稳定化[J]. 中国科学, 2005, 35(5): 372-377. |
ZHANG X T, WANG Y M, ZHANG C M, et al. Stablization of luminescent properties and chemical modification of titanate nanotubes[J]. Sci Sin Chim, 2005, 35(5): 372-377. | |
16 | GOTO T, CHO S H, OHTSUKI C, et al. Selective adsorption of dyes on TiO2-modified hydroxyapatite photocatalysts morphologically controlled by solvothermal synthesis[J]. J Environ Chem Eng, 2021, 9(4): 105738. |
17 | SKUBAL L R, MESHKOV N K, RAJH T, et al. Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles[J]. J Photochem Photobiol A: Chem, 2002, 148(1/2/3): 393-397. |
18 | HABIBA U, JOO T C, SIDDIQUE T A, et al. Effect of degree of deacetylation of chitosan on adsorption capacity and reusability of chitosan/polyvinyl alcohol/TiO2 nano composite[J]. Int J Biol Macromol, 2017, 104: 1133-1142. |
19 | LI J, FENG J, YAN W. Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for methylene blue[J]. App Surf Sci, 2013, 279: 400-408. |
20 | ZHANG Q, DENG Y X, LUO H, et al. Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions[J]. J Am Chem Soc, 2019, 141(32): 12804-12814. |
21 | HUANG J, WRÓBLEWSKA A A, STEINKOENIG J, et al. Assembling lipoic acid and nanoclay into nacre-mimetic nanocomposites[J]. Macromolecules, 2021, 54(10): 4658-4668. |
22 | JIN Z, SUGIYAMA Y, ZHANG C, et al. Rapid photoligation of gold nanocolloids with lipoic acid-based ligands[J]. Chem Mater, 2020, 32(17): 7469-7483. |
23 | ZHANG Q, DENG Y, SHI C Y, et al. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides)[J]. Matter, 2021, 4(4): 1352-1364. |
24 | 吴磊, 张宇辉, 司杨. 不同酸处理燕麦秸秆对亚甲基蓝染料的吸附性能研究[J]. 青海大学学报, 2022, 40(3): 1-6. |
WU L, ZHANG Y H, SI Y. Study on the adsorption properties of methylene blue dye on oat straw treated with different acids[J]. J Qinghai Univ, 2022, 40(3): 1-6. | |
25 | WANG Q, LEI X, PAN F, et al. A new type of activated carbon fibre supported titanate nanotubes for high-capacity adsorption and degradation of methylene blue[J]. Colloids Surf A, 2018, 555: 605-614. |
26 | HEZARJARIBI M, BAKERI G, SILLANP M, et al. Novel adsorptive PVC nanofibrous/thiol-functionalized TNT composite UF membranes for effective dynamic removal of heavy metal ions[J]. J Environ Manage, 2021, 284: 111996. |
27 | BADRUDDOZA A Z M, TAY A S H, TAN P Y, et al. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies[J]. J Hazard Mater, 2011, 185(2/3): 1177-1186. |
28 | ZHANG Y, LU D, KONDAMAREDDY K K, et al. Controllable preparation and efficient visible-light-driven photocatalytic removal of Cr(Ⅵ) using optimized Cd0.5Zn0.5S nanoparticles decorated H-titanate nanotubes[J]. Adv Powder Technol, 2021, 32(10): 3788-3800. |
29 | KAMRAN U, PARK S J. Functionalized titanate nanotubes for efficient lithium adsorption and recovery from aqueous media-science direct[J]. J Solid State Chem, 2020, 283: 121157. |
30 | LIU W, CAI Z, ZHAO X, et al. High-capacity and photoregenerable composite material for efficient adsorption and degradation of phenanthrene in water[J]. Environ Sci Technol, 2016, 50(20): 11174-11183. |
31 | SUN W L, XIA J, LI S, et al. Effect of natural organic matter (NOM) on Cu(Ⅱ) adsorption by multi-walled carbon nanotubes: relationship with NOM properties[J]. Chem Eng J, 2012, 200: 627-636. |
32 | 敖航. 硫醇稳定金纳米簇的可控制备,发光性质及传感应用研究[D]. 金华: 浙江师范大学, 2018. |
AO H. Controllable fabrication, luminescence properties and sensing applications of thiolate-protected gold nanoclusters[D]. Jinhua: Zhejiang Normal University, 2018. | |
33 | 温俊峰, 刘侠, 马向荣, 等. 沙柳基磁性多孔炭的制备及其吸附亚甲基蓝性能研究[J]. 功能材料, 2021, 52(4): 8. |
WEN J F, LIU X, MA X R, et al. Preparation of magnetic porous carbon from Salix and adsorption properties for methylene blue[J]. J Funct Mater, 2021, 52(4): 8. | |
34 | LAGERGREN S. Zur theorie der sogenannten adsorption geloster stoffe[J]. Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24: 1-39. |
35 | HO Y S, MCKAY G. Sorption of dye from aqueous solution by peat[J]. Chem Eng J, 1998, 70(2): 115-124. |
36 | SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics[J]. Chem Eng J, 2016, 300: 254-263. |
37 | 王晶, 韩巧宁, 雷以廷, 等. 一步法制备富氧木质素活性炭及其亚甲基蓝吸附性能[J]. 化工学报, 2021, 72(5): 2826-2836. |
WANG J, HANG Q N, LEI Y T, et al. One-step preparation of oxygen-enriched lignin activated carbon and its methylene blue adsorption performance[J]. CIESC J, 2021, 72(5): 2826-2836. | |
38 | 曹从军, 马含笑, 侯成敏, 等. 乙基纤维素磁性复合材料对溶液中铜离子的吸附性能[J]. 应用化学, 2022, 39(6): 969-979. |
CAO C J, MA H X, HOU C M, et al. Adsorption of Cu(Ⅱ) from solution by modified magnetic ethyl cellulose[J]. Chin J Appl Chem, 2022, 39(6): 969-979. | |
39 | 董川, 马骏, 刘宏芳, 等. 钛酸纳米管/活性炭复合材料对水体中铅和亚甲基蓝的吸附[J]. 山西大学学报: 自然科学版, 2017, 40(3): 569-576. |
DONG C, MA J, LIU H F, et al. Titanate nanotubes/activated carbon composite material for the adsorption of lead and methylene blue in water[J]. J Shanxi Univ (Nat Sci Ed), 2017, 40(3): 569-576. | |
40 | AL-GHOUTI M A, KHRAISHEH M A M, AHMAD M N M, et al. Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study[J]. J Hazard Mater, 2009, 165(1/2/3): 589-598. |
41 | MOUNI L, MERABET D, BOUZAZA A, et al. Adsorption of Pb(Ⅱ) from aqueous solutions using activated carbon developed from Apricot stone[J]. Desalination, 2011, 276(1/2/3): 148-153. |
42 | HAN R, ZHANG J, HAN P, et al. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite[J]. Chem Eng J, 2009, 145(3): 496-504. |
43 | 杨权成, 张开永, 郭德, 等. 介孔硅酸钙吸附亚甲基蓝性能研究[J]. 无机盐工业, 2021, 53(10): 86-91. |
YANG Q C, ZHANG K Y, GUO D, et al. Research on adsorption properties of methylene blue by mesoporous calcium silicate [J]. Inorg Chem Ind, 2021, 53(10): 86-91. |
[1] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[2] | 赵金丽, 于宗仁, 苏伯民. 墓葬壁画中蛋清胶结材料的热裂解-气质联用分析[J]. 应用化学, 2023, 40(4): 562-570. |
[3] | 熊波, 黎泰华, 周武平, 刘长宇, 徐晓龙. 一步热聚合法制备Cu2O/CuO-g-C3N4吸附剂及其对甲基橙吸附的性能[J]. 应用化学, 2023, 40(3): 420-429. |
[4] | 张琴, 刘文彬, 樊利娇, 谢宇铭, 黄国林. 功能化介孔二氧化硅的制备及其吸附分离水中铀的研究进展[J]. 应用化学, 2023, 40(2): 169-187. |
[5] | 赵跃华, 王大鹏. 氨基化氧化石墨烯和脂肪酸在水-油界面的共吸附动力学[J]. 应用化学, 2022, 39(8): 1274-1284. |
[6] | 曹从军, 马含笑, 侯成敏, 丁小健, 管飙. 乙基纤维素磁性复合材料对溶液中铜离子的吸附性能[J]. 应用化学, 2022, 39(6): 969-979. |
[7] | 薛松松, 解正峰, 何佳伟, 张天怡, 夏保平, 李雨芹. 高选择性快速识别汞(Ⅱ)离子的磺酰腙型探针的合成及在吸附中的应用[J]. 应用化学, 2022, 39(5): 760-768. |
[8] | 王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628. |
[9] | 张健爽, 高美珍, 王梦瑶, 石琪, 董晋湘. 沸石咪唑酯骨架结构材料ZIF-71用于低浓度生物基2,3-丁二醇/1,3-丙二醇的吸附分离性能[J]. 应用化学, 2022, 39(11): 1735-1745. |
[10] | 袁定坤, 褚维凡, 倪加惠. 亚铁氰化铜-聚丙烯酰胺/羧甲基纤维素/石墨烯复合水凝胶的制备及铷吸附性能[J]. 应用化学, 2022, 39(11): 1746-1756. |
[11] | 周雯, 佟珊珊. 新型吸附材料分离和富集贵金属的研究进展[J]. 应用化学, 2021, 38(8): 897-910. |
[12] | 刘文彬, 杨莎莎, 黄国林, 樊利娇, 谢宇铭. 磷酸化黄原胶/氧化石墨烯的合成及其对铀的选择性吸附[J]. 应用化学, 2021, 38(6): 658-667. |
[13] | 朱富强, 丁卫平, 韩岩君, 田洪根. 脂质去除分散固相萃取-超高效液相色谱-串联质谱法测定动物源性食品中5种α2-受体激动剂[J]. 应用化学, 2021, 38(6): 713-721. |
[14] | 隋丽丽, 姜惠烨, 王荻, 黄微微, 隋崴崴, 申书昌, 王平, 张文治, 王文波, 赵冰, 刘勇智. 多级结构NiO微球的构筑及对刚果红染料的吸附性能[J]. 应用化学, 2021, 38(4): 447-456. |
[15] | 田龙, 豆维新, 杨玮婷, 王成. 不同尺寸ZIF-8对U(VI)的吸附性能[J]. 应用化学, 2021, 38(1): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||