应用化学 ›› 2023, Vol. 40 ›› Issue (10): 1347-1358.DOI: 10.19894/j.issn.1000-0518.230065
• 综合评述 • 上一篇
刘成员1,2, 于江玉3(), 李奉翠1,2(), 刘智伟3
收稿日期:
2023-03-17
接受日期:
2023-06-27
出版日期:
2023-10-01
发布日期:
2023-10-13
通讯作者:
于江玉?,李奉翠?
基金资助:
Cheng-Yuan LIU1,2, Jiang-Yu YU3(), Feng-Cui LI1,2(), Zhi-Wei LIU3
Received:
2023-03-17
Accepted:
2023-06-27
Published:
2023-10-01
Online:
2023-10-13
Contact:
Jiang-Yu YU,Feng-Cui LI
About author:
30040501@hncj.edu.cnSupported by:
摘要:
拉曼光谱是一种无损的分析技术,可以提供样品化学结构和分子相互作用的详细信息。由光谱学方法与常规电化学方法相结合产生的电化学原位光谱是一种动态探测电极材料结构和相组成的强大技术,能够方便地提供电极界面分子的微观结构信息,这使得其在储能领域中有广阔的应用前景。拉曼光谱能够有效地原位表征可充电铝离子电池氯化铝基电解液中络合离子、不同正极材料在充放电过程中的变化规律。结合X射线衍射技术(XRD)或X射线光电子能谱技术(XPS)等表征技术,拉曼光谱能够有效地揭示可充电铝离子电池的储能机理,包括对电池电解液和电极材料的研究以及电极表面反应的原位监测,对电池材料和界面结构性质的研究可以为电池材料和微观结构的优化设计提供指导,对电极表面反应的原位监测,有助于对电极界面反应的机理进行深入的研究,从而指导正极材料结构改进,促进可充电铝离子电池的发展。
中图分类号:
刘成员, 于江玉, 李奉翠, 刘智伟. 拉曼光谱测试技术在可充电铝离子电池储能机理的研究进展[J]. 应用化学, 2023, 40(10): 1347-1358.
Cheng-Yuan LIU, Jiang-Yu YU, Feng-Cui LI, Zhi-Wei LIU. Research Progress of Raman Spectroscopy Technique in Energy Storage Mechanism of Rechargeable Aluminum-Ion Batteries[J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1347-1358.
图1 (a、b) 充放电过程中AlCl3-urea电解液原位拉曼光谱[34]; (c、d) 铁-铝混合液态电池的铁基Fe(126)和Fe(210)正极电解液不同状态时拉曼光谱[38]
Fig.1 (a, b) In situ Raman spectra of AlCl3-urea electrolyte [34]; (c, d) Raman spectra of Fe(126) and Fe(210) cathode electrolytes in different states of hybrid iron-aluminum liquid battery[38]
Electrolyte | Laser wavelength/nm | Ref. |
---|---|---|
AlCl3-EMImCl | 325, 532 | [ |
AlCl3-urea/Acetamide | — | [ |
AlCl3-EMImCl-NaAlCl4 | — | [ |
AlCl3·6H2O | 514 | [ |
AlCl3-ET3NHCl | — | [ |
FeCl3·6H2O-Urea-EG | 488 | [ |
表1 研究可充电铝离子电池电解液拉曼光谱时所使用的激光波长
Table 1 Laser wavelengths used in the Raman spectroscopy measurements of electrolytes for rechargeable aluminum ion batteries
Electrolyte | Laser wavelength/nm | Ref. |
---|---|---|
AlCl3-EMImCl | 325, 532 | [ |
AlCl3-urea/Acetamide | — | [ |
AlCl3-EMImCl-NaAlCl4 | — | [ |
AlCl3·6H2O | 514 | [ |
AlCl3-ET3NHCl | — | [ |
FeCl3·6H2O-Urea-EG | 488 | [ |
图2 (a) VS4正极原位拉曼光谱以及对应的充放电曲线[7]; (b) Se/GA正极完全放电状态的拉曼光谱[11]; (c)不同状态时MoSe2正极的拉曼光谱[14]; (d)不同状态时PANI/OMC正极的拉曼光谱[15]; (e)不同状态Pth@GO-3正极的拉曼光谱[16]
Fig.2 (a) In situ Raman spectra of VS4 cathode and charge and discharge curves[7]; (b) Raman spectra of Se/GA cathode in fully discharged state[11]; (c) MoSe2 cathode in different states Raman spectra[14]; (d) Raman spectra of PANI/OMC cathodes in different states[15]; (e) Raman spectra of Pth@GO-3 cathodes in different states[16]
图3 (a)天然石墨正极的原位拉曼光谱[49]; (b)少层石墨烯和N掺杂少层石墨烯的原位拉曼光谱[54]; 商业膨胀石墨正极在(c) EG-EMI和(d) EG-ET体系中的原位拉曼光谱[57]
Fig.3 (a) In-situ Raman spectra of graphite-based cathodes[49]; (b) In-situ Raman spectra of few-layer graphene and N-doped few-layer graphene[54]; The in-situ Raman spectra of commercial expanded graphite cathodes in (c) EG-EMI and (d) EG-ET[57]
1 | ZHENG Y, DONG K, WANG Q, et al. Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids[J]. J Chem Eng Data, 2013, 58(1): 32-42. |
2 | COLEMAN F, SRINIVASAN G, KWAŚNY M S. Liquid coordination complexes formed by the heterolytic cleavage of metal halides[J]. Angew Chem Int Ed, 2013, 52(48): 12582-12586. |
3 | LIU C Y, CHEN W T, WU Z M, et al. Density, viscosity and electrical conductivity of AlCl3-amide ionic liquid analogues[J]. J Mol Liq, 2017, 247: 57-63. |
4 | ELIA G A, KRAVCHYK K V, KOVALENKO M V. An overview and prospective on Al and Al-ion battery technologies[J]. J Power Sources, 2021, 481: 228870. |
5 | TU J G, SONG W L, LEI H P, et al. Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives[J]. Chem Rev, 2021, 121: 4903-4961. |
6 | SHYAMAL K D. Graphene: a cathode material of choice for aluminum-ion batteries[J]. Angew Chem Int Ed, 2018, 57: 16606-16617. |
7 | XING L L, OWUSU K A, LIU X Y, et al. Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery[J]. Nano Energy, 2021, 79: 105384. |
8 | ZHANG X F, WANG S, TU J G, et al. Flower-like VS4/rGO composite: an energy storage material for aluminum-ion battery[J]. ChemSusChem, 2018,11: 709-715. |
9 | WU L, SUN R M, XIONG F Y, et al. A rechargeable aluminum-ion battery based on a VS2 nanosheet cathode [J]. Phys Chem Chem Phys, 2018, 20: 22563-22568. |
10 | WANG S, YU Z J, TU J G, et al. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene[J]. Adv Energy Mater, 2016, 6: 1600137. |
11 | ZHANG T, CAI T H, XING W, et al. A rechargeable 6-electron Al-Se battery with high energy density[J]. Energy Storage Mater, 2021, 41: 667-676. |
12 | WU S C, AI Y F, CHEN Y Z, et al. High-performance rechargeable aluminum-selenium battery with a new deep eutectic solvent electrolyte: thiourea-AlCl3[J]. ACS Appl Mater Int, 2020, 12: 27064-27073. |
13 | ZHANG X, HE S M, TANG Y S, et al. An advanced high energy-efficiency rechargeable aluminum-selenium battery[J]. Nano Energy, 2019, 66: 104159. |
14 | AI Y F, WU S C, WANG K Y, et al. Three-dimensional molybdenum diselenide helical nanorod arrays for high-performance aluminum-ion batteries[J]. ACS Nano, 2020, 14: 8539-8550. |
15 | LIAO Y F, WANG D D, LI X J, et al. High performance aluminum ion battery using polyaniline/ordered mesoporous carbon composite[J]. J Power Sources, 2020, 477: 228702. |
16 | KONG D Q, FAN H D, DING X F, et al. β-Hydrogen of polythiophene induced aluminum ion storage for high-performance Al-polythiophene batteries[J]. ACS Appl Mater Inter, 2020, 12: 46065-46072. |
17 | LI N, YAO Y, LV T, et al. High-performance wire-shaped aluminum ion batteries based on continuous graphene fiber cathodes[J]. J Power Sources, 2021, 488: 229460. |
18 | ZHANG E J, WANG J, WANG B, et al. Unzipped carbon nanotubes for aluminum battery[J]. Energy Storage Mater, 2019, 23: 72-78. |
19 | WANG J, ZHANG X, CHU W Q, et al. A sub-100 ℃ aluminum ion battery based on a ternary inorganic molten salt[J]. Chem Commun, 2019, 55: 2138-2141. |
20 | TU J G, WANG J X, ZHU H M, et al. The molten chlorides for aluminum-graphite rechargeable batteries[J]. J Alloy Compd, 2020, 821: 153285. |
21 | 谭斌, 罗文斌, 晁自胜. 铝离子电池正极材料的研究进展[J]. 化学试剂, 2022, 44(9): 1306-1313. |
TAN B, LUO W B, CHAO Z S. Research progress of cathode materials for aluminum ion batteries[J]. Chem Reag, 2022, 44(9): 1306-1313. | |
22 | 赵亮, 胡勇胜, 李泓, 等. 拉曼光谱在锂离子电池研究中的应用[J]. 电化学, 2011, 17(1):12-23. |
ZHAO L, HU Y S, LI H, et al. Applications of Raman spectroscopy technique in lithium ion batteries[J]. Electrochem, 2011, 17(1): 12-23. | |
23 | 陆敬予, 柯承志, 龚正良, 等. 原位表征技术在全固态锂电池中的应用[J]. 物理学报, 2021, 70(19): 1-27. |
LU J Y, KE C Z, GONG Z L, et al. Application of in-situ characterization techniques in all-solid-state lithium batteries[J]. Acta Phys Sin, 2021, 70(19): 1-27. | |
24 | 程晓琴, 李慧君, 赵振新, 等. 原位拉曼光谱在碱金属离子电池炭负极材料研究中的应用[J]. 新型炭材料, 2021, 36(1): 93-105. |
CHENG X Q, LI H J, ZHAO Z X, et al. The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries[J]. New Carbon Mater, 2021, 36(1): 93-105. | |
25 | 张月皎, 朱越洲, 李剑锋. 拉曼光谱在燃料电池领域的应用[J]. 物理化学学报, 2021, 37(9): 4-12. |
ZHANG Y J, ZHU Y Z, LI J F. Application of Raman spectroscopy in fuel cell[J]. Acta Phys Chim Sin, 2021, 37(9): 4-12. | |
26 | 阿尧林, 王耀辉, 董金超, 等. 原位拉曼光谱研究电催化反应过程[J]. 广西师范大学学报(自然科学版), 2022, 40(5):183-198. |
A Y L, WANG Y H, DONG J C, et al. In-situ Raman spectroscopy study of electrocatalytic reaction process[J]. J Guangxi Norm Univ (Nat Sci Ed), 2022, 40(5): 183-198. | |
27 | 方亮, 张凯, 周丽敏. 铝离子电池电解液的研究进展[J]. 储能科学与技术, 2022, 11(4): 1236-1245. |
FANG L, ZHANG K, ZHOU L M. Recent advances and prospects of electrolyte for aluminum ion batteries[J]. Energy Storage Sci Technol, 2022, 11(4): 1236-1245. | |
28 | TAKAHASHI S, CURTISS L A, GOSZTOLA A D, et al, Molecular orbital calculations and Raman measurements for 1-ethyl-3-methylimidazolium chloroaluminates[J], Inorg Chem, 1995, 34: 2990-2993. |
29 | HU P C, ZHANG R, MENG X H, et al, Structural and spectroscopic characterizations of amide-AlCl3-based ionic liquids analogues[J]. Inorg Chem, 2016, 55: 2374-2380. |
30 | WANG C, LI J F, JIAO H D, et al. The electrochemical behavior of an aluminum alloy anode for rechargeable Al-ion batteries using an AlCl3-urea liquid electrolyte[J]. RSC Adv, 2017, 7: 32288-32293. |
31 | WANG S, JIAO S Q, WANG J X, et al. High-performance aluminum-ion battery with CuS@C microsphere composite cathode[J]. ACS Nano, 2017, 11: 469-477. |
32 | LI G Y, KOU M Y, TU J G, et al. Coordination interaction boosts energy storage in rechargeable Al battery with a positive electrode material of CuSe[J]. Chem Eng J, 2021, 421: 127792. |
33 | YU Z J, JIAO S Q, TU J G, et al. Rechargeable nickel telluride/aluminum batteries with high capacity and enhanced cycling performance[J]. ACS Nano, 2020, 14: 3469-3476. |
34 | ANGELL M, ZHU G Z, LIN M C, et al. Ionic liquid analogs of AlCl3 with urea derivatives as electrolytes for aluminum batteries[J]. Adv Funct Mater, 2020, 30: 1901928. |
35 | WANG J Y, HU Y Y, LI Y P, et al. Reversible AlCl 4 - /Al2Cl 7 - conversion in a hybrid Na-Al battery[J]. J Power Sources, 2020, 453: 227843. |
36 | PAN W D, WANG Y F, ZHANG Y G. A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance[J]. J Mater Chem A, 2019, 7: 17420-17425. |
37 | XU H Y, CHEN H, LAI H W. Capacitive charge storage enables an ultrahigh cathode capacity in aluminum-graphene battery[J]. J Energy Chem, 2020, 45: 40-44. |
38 | ZHANG L Y, ZHANG C K, DING Y, et al. A low-cost and high-energy hybrid iron-aluminum liquid battery achieved by deep eutectic solvents[J]. Joule, 2017, 1: 623-633. |
39 | MA Z L, HUANG X B, DOU S, et al. One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials[J]. J Phy Chem C, 2014, 118(31): 17231-17239. |
40 | CHEN S, DUAN J J, JARONIEC M, et al. Three-dimensional N-doped grapheme hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution[J]. Angew Chem Int Ed, 2013, 52(51): 13567-13570. |
41 | LIU J, LI Z Y, HUO X G, et al. Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium ion batteries[J]. J Power Sources, 2019, 422: 49-56. |
42 | HU Y X, YE D L, LUO B, et al. A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries[J]. Adv Mater, 2018, 30(2): 1703824. |
43 | LI Z Y, NIU B B, LIU J, et al. Rechargeable aluminum-ion battery based on MoS2 microsphere cathode[J]. ACS Appl Mater Interfaces, 2018, 10(11): 9451-9459. |
44 | LEE B, LEE H R, YIM T, et al. Investigation on the structural evolutions during the insertion of aluminum ions into Mo6S8 chevrel phase[J]. J Electrochem Soc, 2016, 163(6): A1070-A1076. |
45 | YANG W W, LU H, CAO Y, et al. A flexible free-standing MoS2/carbon nanofibers composite cathode for rechargeble aluminum-ion batteries[J]. ACS Sustainable Chem Eng, 2019, 7(5): 4861-4867. |
46 | HU Y X, LUO B, YE D L, et al. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries[J]. Adv Mater, 2017, 29(48): 1606132. |
47 | YU Z J, TU J G, WANG C, et al. A Rechargeable Al/graphite battery based on AlCl3/1-butyl-3-methylimidazolium chloride ionic liquid electrolyte[J]. Chem Select, 2019, 4: 3018-3024. |
48 | JIAO H D, WANG C, TU J G, et al. A rechargeable Al-ion battery: Al/molten AlCl3-urea/graphite[J]. Chem Commun, 2017, 53: 2331-2334. |
49 | WANG D Y, WEI C Y, LIN M C, et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode[J]. Nat Commun, 2017, 8: 14283. |
50 | ANGELL M, PAN C J, RONG Y M, et al. High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte[J]. Proc Nat Acad Sci, 2017, 114(5): 834-839. |
51 | LIN M C, GONG M, LU B A, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 325-328. |
52 | ZAFAR Z A, ABBAS G, SILHAVIK M, et al. Reversible anion intercalation into graphite from aluminum perchlorate “water-in-salt” electrolyte[J]. Electrochim Acta, 2022, 404: 139754. |
53 | XU H Y, BAI T W, CHEN H, et al. Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery[J]. Energy Storage Mater, 2019, 17: 38-45. |
54 | CHEN H, GUO F, LIU Y J, et al. A defect-free principle for advanced graphene cathode of aluminum-ion battery[J]. Adv Mater, 2017, 29: 1605958. |
55 | LIU Z D, WANG X H, LIU Z Y, et al. Low-cost gel polymer electrolyte for high-performance aluminum-ion batteries[J]. ACS Appl Mater Inter, 2021, 13: 28164-28170. |
56 | NG K L, DONG T, ANAWATI J, et al. High-performance aluminum ion battery using cost-effective AlCl3-trimethylamine hydrochloride ionic liquid electrolyte[J]. Adv Sustainable Syst, 2020, 4: 2000074. |
57 | DONG X Z, XU H Y, CHEN H, et al. Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery[J]. Carbon, 2019, 148: 134-140. |
58 | CHILDRESS A S, PARAJULI P, EYLEY S, et al. Effect of nitrogen doping in the few layer graphene cathode of an aluminum ion battery[J]. Chem Phys Lett, 2019, 733: 136669. |
59 | CHILDRESS A S, PARAJULI P, ZHU J Y, et al. A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries[J]. Nano Energy, 2017, 39: 69-76. |
60 | WANG S T, KRAVCHYK K V, KRUMEICH F, et al. Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery[J]. ACS Appl Mater Inter, 2017, 9: 28478-28485. |
61 | KRAVCHYK K V, WANG S T, PIVETEAU L, et al. Efficient aluminum chloride-natural graphite battery[J]. Chem Mater, 2017, 29: 4484-4492. |
62 | LIU C Y, LIU Z W, LI Q M, et al. Binder-free ultrasonicated graphite flakes@carbon fiber cloth cathode for rechargeable aluminum-ion battery[J]. J Power Sources, 2019, 438: 226950. |
63 | LIU C Y, LIU Z W, LI Q M, et al. Preparation and in-situ Raman characterization of binder-free u-GF@CFC cathode for rechargeable aluminum-ion battery[J]. MethodsX, 2019, 6: 2374-2383. |
64 | 李焕同, 曹代勇, 邹晓艳, 等. 不同堆砌层数煤系石墨的拉曼光谱表征及其表面石墨化均匀程度[J]. 光谱学与光谱分析, 2022, 42(8): 2616-2623. |
LI H T, CAO D Y, ZOU X Y, et al. Raman spectroscopic characterization and surface grahhitization degree of coal-based graphite with the number of aromatic layers[J]. Spectro Spectral Anal, 2022, 42(8): 2626-2623. |
[1] | 师文君, 孙中辉, 宋忠乾, 许佳楠, 韩冬雪, 牛利. 钠离子电池层状过渡金属氧化物正极材料研究进展[J]. 应用化学, 2023, 40(4): 583-596. |
[2] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[3] | 石雪建, 刘万强, 王春丽, 程勇, 王立民. 钾离子电池用Sb基负极材料研究进展[J]. 应用化学, 2023, 40(2): 210-228. |
[4] | 王恩通, 杨林芳. 高比容量锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2的制备及性能[J]. 应用化学, 2022, 39(8): 1209-1215. |
[5] | 宋林虎, 李世友, 王洁, 张晶晶, 张宁霜, 赵冬妮, 徐菲. 锂离子电池电解液除酸除水添加剂的研究进展[J]. 应用化学, 2022, 39(5): 697-706. |
[6] | 陶荟冰, 田震, 谢勇, 孙瑜, 汪莉, 康卓, 张跃. 电解水催化材料动态构效关系的原位拉曼研究进展[J]. 应用化学, 2022, 39(4): 528-539. |
[7] | 赵莹, 邵奕嘉, 李罗钱, 任建伟, 廖世军. 富锂正极材料的衰减机理及循环稳定性提升的研究进展[J]. 应用化学, 2022, 39(02): 205-222. |
[8] | 张艳平, 薛冬峰. 钠和钾离子对磷酸二氢根拉曼光谱的影响[J]. 应用化学, 2020, 37(7): 823-829. |
[9] | 杨涛, 刘文凤, 马梦月, 董红玉, 杨书廷. 三元锂离子动力电池衰减机理[J]. 应用化学, 2020, 37(10): 1181-1186. |
[10] | 朱越洲,张月皎,李剑锋,任斌,田中群. 表面增强拉曼光谱:应用和发展[J]. 应用化学, 2018, 35(9): 984-992. |
[11] | 张和,张梦诗,廖世军. 富锂三元层状正极材料的研究进展[J]. 应用化学, 2018, 35(11): 1277-1288. |
[12] | 陈丽辉,吴秋晗,潘佩,宋子轩,王锋,丁瑜. 尖晶石型八面体结构锰酸锂的制备及其电化学性能[J]. 应用化学, 2018, 35(11): 1384-1390. |
[13] | 杜鑫川, 黄岗, 王立民. 五氧化二钒空心球制备及其作为镁二次电池正极材料[J]. 应用化学, 2015, 32(12): 1462-1464. |
[14] | 杜鑫川, 黄岗, 王立民. 五氧化二钒空心球制备及其作为镁二次电池正极材料[J]. 应用化学, 2015, 32(12): 0-0. |
[15] | 贺冬华, 唐安平, 申洁, 徐国荣, 刘立华, 令玉林. 锂离子电池电极材料磷酸氧钒锂的研究进展[J]. 应用化学, 2014, 31(10): 1115-1122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||