应用化学 ›› 2023, Vol. 40 ›› Issue (10): 1335-1346.DOI: 10.19894/j.issn.1000-0518.230141
• 综合评述 •
孟君玲1, 田川1,2, 徐娜1, 赵丽娜1, 钟海霞2(), 徐占林1()
收稿日期:
2023-05-12
接受日期:
2023-08-18
出版日期:
2023-10-01
发布日期:
2023-10-13
通讯作者:
钟海霞,徐占林
基金资助:
Jun-Ling MENG1, Chuan TIAN1,2, Na XU1, Li-Na ZHAO1, Hai-Xia ZHONG2(), Zhan-Lin XU1()
Received:
2023-05-12
Accepted:
2023-08-18
Published:
2023-10-01
Online:
2023-10-13
Contact:
Hai-Xia ZHONG,Zhan-Lin XU
About author:
xuzhanlin1964@163.comSupported by:
摘要:
固体氧化物燃料电池(Solid oxide fuel cells, SOFC)是一种能量转换装置,具有转换效率高、环境友好和燃料适应性强等优点,其中,电极作为电化学反应场所,对SOFC的性能起关键作用。相较于传统的SOFC电极,表面析出纳米颗粒后电极表现出较强的催化活性和优异的电化学性能。本文就钙钛矿型电极材料表面原位析出的研究予以总结。首先,探讨钙钛矿的晶体结构类型对电极表面原位析出的影响; 其次,详细地介绍了钙钛矿中各种缺陷对析出纳米颗粒的影响; 而后对比了目前主要的两种原位析出方式,并对不同的析出产物进行了分析。最后,提出了目前SOFC电极表面原位析出研究所面临的难点与挑战,并对其未来的发展方向进行了总结,这为以后相关的研究指明了方向。
中图分类号:
孟君玲, 田川, 徐娜, 赵丽娜, 钟海霞, 徐占林. 固体氧化物燃料电池电极表面原位析出的研究进展[J]. 应用化学, 2023, 40(10): 1335-1346.
Jun-Ling MENG, Chuan TIAN, Na XU, Li-Na ZHAO, Hai-Xia ZHONG, Zhan-Lin XU. Research Progress of in Situ Exsolution of Electrode Surface of Solid Oxide Fuel Cells[J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1335-1346.
Structure types | Representative materials | Exsolved nanoparticles |
---|---|---|
Single perovskite | La0.3Ca0.7Fe0.7Cr0.3O3?δ[ | Ni-Fe alloy |
Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3?δ[ | Co3Fe7 alloy | |
La0.5Sr0.5Fe0.9Mo0.1?x Ni x O3?δ[ | Fe-Ni alloy | |
Ni-La0.8Sr0.2FeO3?δ[ | Ni-Fe alloy | |
SrFe0.85Ti0.1Ni0.05O3?δ[ | NiO | |
Double perovskite | (PrBa)0.95Fe2?x Ti x O6?δ[ | Fe |
SrBiFeTiO6?δ[ | Bi and Fe | |
Sr1.95Fe1.4Co0.1Mo0.5O6?δ[ | Co | |
Sr2FeMo1?x Co x O6?δ[ | Co-Fe alloy | |
La0.5Sr1.5Fe1.5Mo0.5O6?δ[ | Fe | |
Ruddlesden-Popper perovskite | (La0.6Sr1.4)0.95Mn0.9B0.1O4 (B=Co,Ni,Cu)[ | Co, Ni, Cu |
(LaSr)0.9Fe0.9Cu0.1O4[ | Cu | |
La1.5Sr1.5Mn1.5Ni0.5O7[ | Ni | |
(Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7[ | Co-Fe alloy | |
La1.2Sr0.8Mn0.4Fe0.6O4[ | Fe | |
A-site-deficient perovskite | La0.4Sr0.4Ti0.94Ni0.06O3?δ[ | Ni |
Pr0.4Sr0.5Co x Fe0.9?x Mo0.1O3?δ[ | Co-Fe alloy | |
(Ba0.2Sr0.8)0.9Ni0.07Fe0.63Mo0.3O3?δ[ | NiFe/NiFeO x core-shell structure | |
(Pr0.5Sr0.5)0.9Fe0.8Ru0.1Nb0.1O3?δ[ | FeRu/FeO x core-shell structure | |
La0.6Sr0.2Cr0.85Ni0.15O3[ | Ni |
表1 不同结构类型的钙钛矿电极材料原位析出的研究以及代表性材料
Table 1 Study on exsolution of SOFC electrode with different structure types of perovskite and representative materials
Structure types | Representative materials | Exsolved nanoparticles |
---|---|---|
Single perovskite | La0.3Ca0.7Fe0.7Cr0.3O3?δ[ | Ni-Fe alloy |
Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3?δ[ | Co3Fe7 alloy | |
La0.5Sr0.5Fe0.9Mo0.1?x Ni x O3?δ[ | Fe-Ni alloy | |
Ni-La0.8Sr0.2FeO3?δ[ | Ni-Fe alloy | |
SrFe0.85Ti0.1Ni0.05O3?δ[ | NiO | |
Double perovskite | (PrBa)0.95Fe2?x Ti x O6?δ[ | Fe |
SrBiFeTiO6?δ[ | Bi and Fe | |
Sr1.95Fe1.4Co0.1Mo0.5O6?δ[ | Co | |
Sr2FeMo1?x Co x O6?δ[ | Co-Fe alloy | |
La0.5Sr1.5Fe1.5Mo0.5O6?δ[ | Fe | |
Ruddlesden-Popper perovskite | (La0.6Sr1.4)0.95Mn0.9B0.1O4 (B=Co,Ni,Cu)[ | Co, Ni, Cu |
(LaSr)0.9Fe0.9Cu0.1O4[ | Cu | |
La1.5Sr1.5Mn1.5Ni0.5O7[ | Ni | |
(Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7[ | Co-Fe alloy | |
La1.2Sr0.8Mn0.4Fe0.6O4[ | Fe | |
A-site-deficient perovskite | La0.4Sr0.4Ti0.94Ni0.06O3?δ[ | Ni |
Pr0.4Sr0.5Co x Fe0.9?x Mo0.1O3?δ[ | Co-Fe alloy | |
(Ba0.2Sr0.8)0.9Ni0.07Fe0.63Mo0.3O3?δ[ | NiFe/NiFeO x core-shell structure | |
(Pr0.5Sr0.5)0.9Fe0.8Ru0.1Nb0.1O3?δ[ | FeRu/FeO x core-shell structure | |
La0.6Sr0.2Cr0.85Ni0.15O3[ | Ni |
图3 钙钛矿的非化学计量比对原位析出的关键作用示意图。 (A)金属颗粒从样品中原位析出的示意图;(B)具有A位缺陷的钙钛矿氧化物的表面析出方程式(方程1)和无阳离子缺陷的钙钛矿氧化物的表面析出方程式(方程2); (C)钙钛矿氧化物非化学计量比的笛卡尔坐标图[27]
Fig.3 Schematic diagram of the key role of in situ exsolution in non-stoichiometric perovskite. (A) Schematic diagram of the in situ exsolution of metal particles from the sample; (B) Equation of exsolution from perovskite oxides with A-site defects (equation 1) and without cationic defects (equation 2); (C) Cartesian plot of the non-stoichiometric perovskite oxides. Compared to perfect ABO3, non-stoichiometric perovskites with excess ions in the lattice are located in the first quadrant and non-stoichiometric perovskites with defects in the lattice are located in the third quadrant[27]
图4 氢气还原和电还原原位析出方式的对比。 (A)原位析出过程示意图; (B)通过氢气还原的方式析出金属纳米颗粒的电池示意图; (C)通过电还原的方式析出金属纳米颗粒电池示意图; (D)蓝色曲线为热重数据,显示氢气还原后氧损失随时间的变化,橙色曲线为外加2 V电压后,电流密度随时间的变化; (E)在900 ℃氢气还原20 h后的形貌图; (F)图E的形貌放大图; (G)在900 ℃电还原150 s后的形貌图; (H)图G的形貌放大图; (I)电还原后的电池在750 ℃运行100 h后的形貌图; (J)图I的形貌放大图; (K)平行坐标系中E-J的样品的各种特性曲线[28]
Fig.4 Comparison of the in situ exsolution methods by hydrogen reduction and electric reduction. (A) Schematic diagram of the in situ exsolution process; (B) Metal nanoparticles are exsoluted by hydrogen reduction; (C) Metal nanoparticles are exsoluted by electric reduction; (D) The blue curve is the TG data, showing the change of oxygen loss with time after hydrogen reduction, and the orange curve is the change of current density with time after the application of 2 V voltage. SEM micrographs of electrodes surface; (E) Reduction by hydrogen at 900 ℃ for 20 h; (F) The enlarged morphology of figure E; (G) Electrochemical switching under 900 ℃ for 150 s; (H) The enlarged morphology of figure G; (I) Fuel cell testing at 750 ℃ for 100 h after electrochemical reduction; (J) The enlarged morphology of figure I; (K) Various characteristics of the samples shown in E-J, plotted in a parallel coordinate system[28]
1 | BOLDRIN P, BRANDON N P. Progress and outlook for solid oxide fuel cells for transportation applications[J]. Nat Catal, 2019, 2: 571-577. |
2 | GREEN R D, ELANGOVAN S E, CHEN F. Perspective-solid oxide cell technology for space exploration[J]. J Electrochem Soc, 2022, 169: 054528-054532. |
3 | SINGH M, ZAPPA D, COMINI E. Solid oxide fuel cell: decade of progress, future perspectives and challenges[J]. Int J Hydrogen Energy, 2021, 46: 27643-27674. |
4 | ZHENG Z, JING J, YU H, et al. Boosting and robust multifunction cathode layer for solid oxide fuel cells[J]. ACS Sustainable Chem Eng, 2022, 10: 6817-6825. |
5 | YU X, WANG Z, REN R, et al. In situ self-reconstructed nanoheterostructure catalysts for promoting oxygen reduction[J]. ACS Energy Lett, 2022, 7: 2961-2969. |
6 | ZHANG B, ZHANG S, HAN H, et al. Cobalt-free souble perovskite oxide as a promising cathode for solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2023, 15: 8253-8262. |
7 | MENG J L, LIU X J, HAN L, et al. Improved electrochemical performance by doping cathode materials Sr2Fe1.5Mo0.5- xTaxO6- δ (0.0≤x≤0.15) for solid state fuel cell[J]. J Power Sources, 2014, 247: 845-851. |
8 | MENG J L, YUAN N, LIU X J, et al. Assessment of LaM0.25Mn0.75O3- δ (M=Fe, Co, Ni, Cu) as promising cathode materials for intermediate-temperature solid oxide fuel cell[J]. Electrochim Acta, 2015, 169: 264-275. |
9 | MENG J L, LIU X J, YAO C G, et al. Investigations on structures, thermal expansion and electrochemical properties of La0.75Sr0.25Cu0.5- xCoxMn0.5O3- δ (x=0, 0.25, and 0.5) as potential cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochim Acta, 2015, 186: 262-270. |
10 | MENG J L, YUAN N, LIU X J, et al. Synergistic effects of intrinsic cation disorder and electron-deficient substitution on ion and electron conductivity in La1- xSrxCo0.5Mn0.5O3- δ (x=0, 0.5, and 0.75)[J]. Inorg Chem, 2015, 54: 2820-2829. |
11 | MENG J L, LIU X J, YAO C G, et al. SrFe0.8Mo0.2O3- δ: cathode materialfor intermediate temperature solid oxide fuel cells[J]. Solid State Ionics, 2014, 260: 43-48. |
12 | MENG J L, LIU X J, YAO C G, et al. Bi-doped La2ZnMnO6- δ and relevant Bi-deficient compound as potential cathodes for intermediate temperature solid oxide fuel cells[J]. Solid State Ionics, 2015, 279: 32-38. |
13 | SASE M, HERMES F, YSHIRO K, et al. Enhancement of oxygen surface exchange at the hereo-interface of (La, Sr)CoO3/(La, Sr)2CoO4 with PLD-layered films[J]. J Electrochem Soc, 2008, 155: B793-B797. |
14 | YOON J, CHO S, KIM J H, et al. Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid oxide fuel cells[J]. Adv Funct Mater, 2009, 19: 3868-3873. |
15 | CRUMLIN E J, MUTORO E, AHN S J, et al. Oxygen reduction kinetics enhancement on a heterostructured oxide surface for solid oxide fuel cells[J]. J Phys Chem Lett, 2010, 1: 3149-3155. |
16 | LYNCH M E, YANG L, QIN W, et al. Enhancement of La0.6Sr0.4Co0.2Fe0.8O3- δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3± δ investigated using a new test electrode platform[J]. Energy Environ Sci, 2011, 4: 2249-2258. |
17 | MA W, KIM J J, TSVETKOV N, et al. Vertically aligned nanocomposite La0.8Sr0.2CoO3/(La0.5Sr0.5)2CoO4 cathodes-electronic structure, surface chemistry and oxygen reduction kinetics[J]. J Mater Chem A, 2015, 3: 207-219. |
18 | CHOI H J, BAE K, GRIESHAMMER S, et al. Surface turning of solid oxide fuel cell cathode by atomic layer deposition[J]. Adv Energy Mater, 2018, 8: 1802506-1802514. |
19 | JIANG S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges[J]. Int J Hydrogen Energy, 2012, 37: 449-470. |
20 | DING D, LI X, LAI S Y, et al. Enhancing SOFC cathode performance by surface modification through infiltration[J]. Energy Environ Sci, 2014, 7: 552-575. |
21 | WANG H C, ZHANG W W, GUAN K, et al. Enhancing activity and durability of A-site-deficient (La0.6Sr0.4)0.95Co0.2Fe0.8O3- δ cathode by surface modification with PrO2- δ nanoparticles[J]. ACS Sustainable Chem Eng, 2020, 8: 3367-3380. |
22 | LEE S, ZHANG W, KHATKHATAY F, et al. Strain tuning and strong enhancement of ionic conductivity in SrZrO3-RE2O3 (RE=Sm, Eu, Gd, Dy and Er) nanocomposite films[J]. Adv Funct Mater, 2015, 25: 4328-4333. |
23 | LEE S, ZHANG W, KHATKHATAY F, et al. Ionic conductivity increased by two orders of magnitude in macrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films[J]. Nano Lett, 2015, 11: 7362-7369. |
24 | 魏振业, 孟君玲, 王浩聪, 等. 同型异质表面修饰提高La2NiO4+ δ阴极的电催化活性[J]. 应用化学, 2020, 37(8): 939-951. |
WEI Z Y, MENG J L, WANG H C, et al. Improving the electrocatalytic activity of La2NiO4+ δ cathode by surface modification with conformal hereojunction[J]. Chin J Appl Chem, 2020, 37(8): 939-951. | |
25 | JI Q Z, MENG J L, WANG H C, et al. Ruddlesden-popper-based lanthanum cuprate thin film cathodes for solid oxide fuel cells: effects of doping and structural transformation on the oxygen reduction reaction[J]. Int J Hydrogen Energy, 2021, 46: 27173-27182. |
26 | 纪荃增, 孟君玲, 王浩聪, 等. La2CuO4 阴极薄膜的相转变及其对电化学性能的影响[J]. 应用化学, 2021, 38(8): 976-985. |
JI Q Z, MENG J L, WANG H C, et al. Phase transformation of La2CuO4 cathode film and its influence on electrochemical properties[J]. Chin J Appl Chem, 2021, 38(8): 976-985. | |
27 | NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nat Chem, 2013, 5: 916-923. |
28 | MYUNG J, NEAGU D, MILLER D N, et al. Switching on electrocatalytic activity in solid oxide cells[J]. Nature, 2016, 537: 528-531. |
29 | QIU P, YANG X, ZOU L, et al. LaCrO3-coated La0.6Sr0.4Co0.2Fe0.8O3- δ core-shell structured cathode with enhanced Cr tolerance for intermediate-temperature solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2020, 12: 29133-29142. |
30 | CHEN Y, CHEN Y, DING D, et al. A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells[J]. Energy Environ Sci, 2017, 10: 964-971. |
31 | TANAKA H, UENISHI M, TANIGUCHI M, et al. The intelligent catalyst having the self-regenerative function of Pd, Rh, Pt for automotive emissions control[J]. Catal Today, 2006, 117: 321-328. |
32 | MADSEN B D, KOBSIRIPHAT W, WANG Y, et al. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes[J]. J Power Sources, 2007, 166: 64-67. |
33 | MADSEN B D, KOBSIRIPHAT W, WANG Y, et al. SOFC anode performance enhancement through precipitation of nanoscale catalysts[J]. ECS Trans, 2007, 7: 1339-1348. |
34 | KOBSIRIPHAT W, MADSEN B D, WANG Y, et al. La0.8Sr0.2Cr1- xRuxO3- δ-Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance[J]. Solid State Ionics, 2009, 180: 257-264. |
35 | BIERSCHENK D M, POTTER-NELSON E, HOEL C, et al. Pd-substituted (La,Sr)CrO3- δ-Ce0.9Gd0.1O2- δ solid oxide fuel cell anodes exhibiting regenerative behavior[J]. J Power Sources, 2011, 196: 3089-3094. |
36 | KOBSIRIPHAT W, MADSEN B D, WANG Y, et al. Nickel- and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance[J]. J Electrochem Soc, 2010, 157: B279-B284. |
37 | SUN Y F, ZHANG Y Q, CHEN J, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Lett, 2016, 16: 5303-5309. |
38 | YANG C, LI J, LIN Y, et al. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015, 11: 704-710. |
39 | XIAO G L, WANG S W, LIN Y, et al. Ni-doped Sr2Fe1.5Mo0.5O6- δ as anode materials for solid oxide fuel cells[J]. J Electrochem Soc, 2014, 161: F305-F310. |
40 | WANG Y, LIU T, LI M, et al. Exsolved Fe-Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells[J]. J Mater Chem A, 2016, 4: 14163-14169. |
41 | DU Z H, ZHAO H L, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6- δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10: 8660-8669. |
42 | ZHOU J, SHIN T H, NI C S, et al. In situ growth of nanoparticles in layered perovskite La0.8Sr1.2Fe0.9Co0.1O4- δ as an active and stable electrode for symmetrical solid oxide fuel cells[J]. Chem Mater, 2016, 28: 2981-2993. |
43 | ANSARI H M, BASS A S, AHMAD N, et al. Unraveling the evolution of exsolved Fe-Ni alloy nanoparticles in Ni-doped La0.3Ca0.7Fe0.7Cr0.3O3- δ and their role in enhancing CO2-CO electrocatalys[J]. J Mater Chem A, 2022, 10: 2280-2294. |
44 | LI P, DONG R Z, WANG Y C, et al. Improving the performance of Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3- δ-based single-component fuel cell and reversible single-component cells by manufacturing A-site deficiency[J]. Renew Energy, 2021, 177: 387-396. |
45 | XU J S, WU M, SONG Z Y, et al. In situ grown of LaSr(Fe,Mo)O4 cermic anodes with exsolved Fe-Ni nanoparticles for SOFCs: electrochemical performance and stability in H2, CO, and syngas[J]. J Eur Ceram Soc, 2021, 41: 4537-4551. |
46 | YAO X L, ASGHAR M I, ZHAO Y C, et al. Coking resistant Ni-La0.8Sr0.2FeO3 composite anode improves the stability of syngas-fueled SOFC[J]. Int J Hydrogen Energy, 2021, 46: 9809-9817. |
47 | YANG G, ZHOU W, LIU M, et al. Enhancing Electrode performance by exsolved nanoparticles: a superior cobalt-free perovskite electrocatalyst for solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2016, 8: 35308-35314. |
48 | QIAO J S, CHEN X J, AI C Y, et al. Fe-based layered double perovskite anode with in situ exsolved nanoparticles for direct carbon solid oxide fuel cells[J]. Ind Eng Chem Res, 2023, 62: 445-454. |
49 | SUN N, JIN F J, LIU X L, et al. In situ coexsolution of metal nanoparticle-decorated double perovskite as anode materials for solid oxide fuel cells[J]. ACS Appl Energy Mater, 2021, 4: 7992-8002. |
50 | XU C M, SUN W, REN R Z, et al. A highly active and carbon-tolerant anode decorated with in situ grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells[J]. Appl Catal B-Environ, 2021, 282: 119553. |
51 | LI H D, SONG Y F, XU M G, et al. Exsolved alloy nanoparticles decorated Ruddlesden-Popper perovskite as sulfur-tolerant anodes for solid oxide fuel cells[J]. Energy Fuels, 2020, 34: 11449-11457. |
52 | QI H, XIA F, YANG T, et al. In situ exsolved nanoparticles on La0.5Sr1.5Fe1.5Mo0.5O6- δ anode enhance the hydrogen oxidation reaction in SOFCs[J]. J Electrochem Soc, 2020, 167: 024510-024521. |
53 | WANG J K, ZHOU J, YANG J M, et al. Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (B=Co, Ni, Cu) Ruddlesden-Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells[J]. Renew Energ, 2020, 157: 840-850. |
54 | FU L, ZHOU J, YANG J M, et al. Exsolution of Cu nanoparticles in (LaSr)0.9Fe0.9Cu0.1O4 Ruddlesden-Popper oxide as symmetrical electrode for solid oxide cells[J]. Appl Surf Sci, 2020, 511: 145525. |
55 | VECINO-MANTILLA S, QUINTERO E, FONSECA C, et al. Catalytic steam reforming of natural gas over a new Ni exsolved Ruddlesden-Popper manganite in SOFC anode conditions[J]. ChemCatChem, 2020, 12: 1453-1466. |
56 | YANG C, LI J, LIN Y, et al. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015, 11: 704-710. |
57 | CHUNG Y S, KIM, T, SHIN T H, et al. In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden-Popper phase with exsolved Fe nanoparticles as an anode for SOFCs[J]. J Mater Chem A, 2017, 5: 6437-6446. |
58 | LEE J J, KIM K, KIM K J, et al. In-situ exsolution of Ni nanoparticles to achieve an active and stable solid oxide fuel cell anode catalyst on A-site deficient La0.4Sr0.4Ti0.94Ni0.06O3- δ[J]. J Ind Eng Chem, 2021, 103: 264-274. |
59 | LI P, HAN Y, XU M, et al. Electrochemical performance of Pr0.4Sr0.5CoxFe0.9- xMo0.1O3- δ oxides in a reversible SOFC/SOEC system[J]. Energy Fuels, 2022, 36: 15165-15176. |
60 | YANG H Y, LA M, WANG Z M, et al. In situ exsolved NiFe/(NiFe)Ox core-shell-structured nanocatalysts on perovskite anode with enhanced coking resistance[J]. ACS Sustainable Chem Eng, 2022, 10: 12510-12519. |
61 | QIN M X, XIAO Y, YANG H Y, et al. Ru/Nb co-doped perovskite anode: achieving good resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution[J]. Appl Catal B-Environ, 2021, 299: 120613. |
62 | XI X, WANG X W, FAN Y, et al. Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles[J]. J Power Sources, 2021, 482: 228981. |
63 | SUN Y F, LI J H, CUI L, et al. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: a novel coking-tolerant fuel cell anode catalyst[J]. Nanoscale, 2015, 7: 11173-11181. |
64 | HU H, LI M, MIN H, et al. Enhancing the catalytic activity and coking tolerance of the perovskite anode for solid oxide fuel cells through in situ exsolution of Co-Fe nanoparticles[J]. ACS Catal, 2022, 12: 828-836. |
65 | KWON O, SENGODAN S, KIM K, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nat Commun, 2017, 8: 15967. |
66 | LU Y, HUANG Y W, XU Z H, et al. Quantifying electrochemical driving force for exsolution in perovskite oxide by designing graded oxygen chemical potential[J]. ACS Nano, 2023, 17: 14005-14013. |
67 | WANG J Y, YANG J, OPITZ A K, et al. Tuning point defects by elastic stain modulates nanoparticle exsolution on perovskite oxides[J]. Chem Mater, 2021, 33: 5021-5034. |
68 | WANG J Y, KALAEV D, YANG J, et al. Fast surface oxygen release kinetics accelerate nanoparticle exsolution in perovskite oxides[J]. J Am Chem Soc, 2023, 145: 1714-1727. |
69 | LI P, YANG T Q, SHAO Y N, et al. Evaluating the effect of B-site cation doping on the properties of Pr0.4Sr0.5Fe0.9Mo0.1O3 for reversible single-component cells[J]. Ind Eng Chem Res, 2022, 61: 5030-5041. |
70 | ZHANG W W, WANG H C, GUAN K, et al. Enhanced anode performance and coking resistance by in situ exsolved multiples-twinned Co-Fe nanoparticles for solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2020, 12: 461-473. |
71 | ZHU Y, ZHOU W, RAN R, et al. Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells[J]. Nano Lett, 2015, 16: 512-518. |
72 | ZHANG X, ZHANG L F, MENG J L, et al. Enhanced electrochemical property of La0.6Sr0.4Co0.8Fe0.2O3 as cathode for solid oxide fuel cell by efficient in situ polarization-exsolution treatment [J]. Electrochim Acta, 2017, 258: 1096-1105. |
73 | LEE J G, MYUNG J H, NADEN A B, et al. Replacement of Ca by Ni in a perovskite titanate to yield a novel perovskite exsolution architecture for oxygen-evolution reactions[J]. Adv Energy Mater, 2020, 10: 1903693. |
74 | FU L, ZHOU J, ZHOU L K, et al. Facile fabrication of exsolved nanoparticle-decorated hollow ferrite fibers as active electrocatalyst for oxygen evolution reaction[J]. Chem Eng J, 2021, 418: 129422. |
75 | ZHU Y, ZHOU W, RAN R, et al. Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells[J]. Nano Lett, 2016, 16: 512-518. |
76 | ARRIVÉ C, DELAHAYE T, JOUBERT O, et al. Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells[J]. J Power Sources, 2013, 223: 341-348. |
77 | LI J W, WEI B, CAO Z Q, et al. Niobium doped lanthanum strontium ferrite as a redox-stable and sulfur-tolerant anode for solid oxide fuel cells[J]. ChemSusChem, 2018, 11: 254-263. |
78 | DU Z, ZHAO H, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6- δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10: 8660-8669. |
79 | JIANG Y L, GENG Z B, SUN Y, et al. Highly efficient B-site exsolution assisted by Co doping in lanthanum ferrite toward high-performance electrocatalysts for oxygen evolution and oxygen reduction[J]. ACS Sustainable Chem Eng, 2020, 8: 302-310. |
80 | ZHU T L, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2: 478-496. |
81 | LIANG Y, CUI Y, CHAO Y, et al. Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3- δ for efficient oxygen evolution reaction[J]. Nano Res, 2022, 15: 6977-6986. |
82 | MA J J, GENG Z B, JIANG Y L, et al. Exsolution manipulated local surface cobalt/iron alloying and dealloying conversion in La0.95Fe0.8Co0.2O3 perovskite for oxygen evolution reaction[J]. J Alloys Compd, 2021, 854: 157154. |
83 | GUI L Q, PAN G H, MA X, et al. In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: new opportunity for boosting oxygen evolution and reduction reaction[J]. Appl Surf Sci, 2021, 543: 148817. |
84 | CAO X J, KE L, ZHAO K, et al. Surface decomposition of doped PrBaMn2O5+δ induced by in situ nanoparticle exsolution: quantitative characterization and catalytic effect in methane dry reforming reaction[J]. Chem Mater, 2022, 34: 10484-10494. |
[1] | 石雪建, 刘万强, 王春丽, 程勇, 王立民. 钾离子电池用Sb基负极材料研究进展[J]. 应用化学, 2023, 40(2): 210-228. |
[2] | 王婷, 魏奇, 付强, 李伟, 王世伟. 钙钛矿光伏电池封装材料与工艺研究进展[J]. 应用化学, 2022, 39(9): 1321-1344. |
[3] | 孟玉, 张晴, 彭文浩, 朱晓飞, 周德凤. Pr0.8Sr0.2Fe0.7Ni0.3O3-δ -Pr1.2Sr0.8Ni0.6Fe0.4O4+δ 复合阴极的制备及其电化学性能[J]. 应用化学, 2022, 39(5): 797-808. |
[4] | 董国华, 郝丽娟, 张文治, 柴东凤, 赵明, 郎坤. 碳量子点纳米材料在铅卤钙钛矿太阳能电池中的应用研究进展[J]. 应用化学, 2022, 39(5): 707-722. |
[5] | 唐雅薇, 徐兰兰, 刘孝娟. Co、Ni、Fe掺杂有效提升PrBaMn2O5+δ 阳极材料的催化活性[J]. 应用化学, 2022, 39(10): 1543-1553. |
[6] | 纪全增, 孟君玲, 王浩聪, 安涛, 刘孝娟, 孟健. La2CuO4阴极薄膜的相转变及其对电化学性能的影响[J]. 应用化学, 2021, 38(8): 976-985. |
[7] | 纪全增, 孟君玲, 王浩聪, 安涛, 刘孝娟, 孟健. La2CuO4阴极薄膜的相转变及其对电化学性能的影响[J]. 应用化学, 2021, 38(8): 0-0. |
[8] | 朱梦梦, 白珏垚, 陈人杰, 李会利. B位离子掺杂全无机钙钛矿量子点的合成及性能研究进展[J]. 应用化学, 2021, 38(12): 1541-1555. |
[9] | 魏振业, 孟君玲, 王浩聪, 张文文, 刘孝娟, 孟健. 同型异质表面修饰提高La2NiO4+δ阴极的电催化活性[J]. 应用化学, 2020, 37(8): 939-951. |
[10] | 范黎明,王时茂,叶雨琪,丁博文,单雪燕,孟钢,方晓东. 卤化物钙钛矿微纳阵列的可控制备及应用[J]. 应用化学, 2020, 37(4): 367-379. |
[11] | 王春丽,孙连山,钟鸣,王立民,程勇. 过渡金属及其化合物应用于锂硫电池的研究进展[J]. 应用化学, 2020, 37(4): 387-404. |
[12] | 惠康龙, 傅继澎, 高湉, 唐明学. 金属硫化物在可充电电池中的研究进展[J]. 应用化学, 2020, 37(12): 1384-1402. |
[13] | 蔡敏, 吴春燕, 谢贻顺, 班贵, 赖飞燕, 黄小英, 张晓辉. 正硅酸乙酯对高电压镍锰酸锂基全电池电化学性能的影响[J]. 应用化学, 2020, 37(11): 1301-1308. |
[14] | 黄国斌, 骆登峰, 张茂升. 多色高发光效率CsPbX3(X=Cl,Br,I)钙钛矿量子点的制备及其在发光二极管中的应用[J]. 应用化学, 2019, 36(8): 932-938. |
[15] | 黄国斌, 骆登峰, 张茂升. 多色高发光效率CsPbX3(X=Cl,Br,I)钙钛矿量子点的制备及其在发光二极管中的应用[J]. 应用化学, 2019, 36(8): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||