应用化学 ›› 2022, Vol. 39 ›› Issue (10): 1543-1553.DOI: 10.19894/j.issn.1000-0518.220048

• 研究论文 • 上一篇    下一篇

Co、Ni、Fe掺杂有效提升PrBaMn2O5+δ 阳极材料的催化活性

唐雅薇1,2, 徐兰兰1, 刘孝娟1,2()   

  1. 1.中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,长春 130022
    2.中国科学技术大学,合肥 230026
  • 收稿日期:2022-02-22 接受日期:2022-04-27 出版日期:2022-10-01 发布日期:2022-10-05
  • 通讯作者: 刘孝娟
  • 基金资助:
    国家自然科学基金委员会-中国工程物理研究院项目(U2130114)

Effectively Improving the Electrocatalytic Activity of PrBaMn2O5+δ Anode by Doping Co, Ni and Fe

Ya-Wei TANG1,2, Lan-Lan XU1, Xiao-Juan LIU1,2()   

  1. 1.State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
    2.University of Science and Technology of China,Hefei 230026,China
  • Received:2022-02-22 Accepted:2022-04-27 Published:2022-10-01 Online:2022-10-05
  • Contact: Xiao-Juan LIU
  • About author:lxjuan@ciac.ac.cn
  • Supported by:
    the China Academy of Engneering Phycics NSAF Joiut Fund of National Natural Science Foundation of China(U2130114)

摘要:

开发高效的阳极材料对实现固体氧化物燃料电池(SOFC)大规模商业化起着至关重要的作用。基于组分工程设计思想,以Pr0.5Ba0.5MnO3-δ 为基质,通过B位过渡金属元素掺杂,在还原条件下合成了PrBaMn1.6X0.4O5+δ (PBMX,X=Co,Ni,Fe)系列层状钙钛矿阳极材料,系统探究了不同过渡金属元素掺杂对PrBaMn2O5+δ (PBMO)的微观结构以及电化学性能的影响,并分析了A位缺陷对PBMX阳极材料的性能提升作用。结果表明,Co、Ni的掺杂效果明显优于Fe的掺杂,PrBaMn1.6Co0.4O5+δ (PBMC)和PrBaMn1.6Ni0.4O5+δ (PBMN)在还原过程中会产生更多的氧空位,材料的电化学性能更优。其中,PBMC作为阳极材料具有最高的催化活性,在H2的还原条件下,800 ℃时,其对称电池的界面极化电阻为0.170 Ω·cm2,并且在以H2作为燃料气的条件下全电池输出874 mW/cm2的最大功率密度。分析结果表明,掺杂过渡金属对电化学活性的提升源于其对H2还原条件下表面粗糙度的增强及氧空位浓度的增加。此外,进一步引入A位缺陷后,可以得到催化活性更高的Pr0.6BaMn1.6X0.4O5+δ (P0.6BMX,X=Co,Ni,Fe)阳极材料,其中,800 ℃的测试温度下,P0.6BMC的界面极化电阻仅为0.090 Ω·cm2,全电池输出的最大功率密度为952 mW/cm2

关键词: 元素掺杂, 表面氧空位, 固体氧化物燃料电池, 阳极

Abstract:

The development of efficient anode materials plays an important role in the large-scale commercialization of solid oxide fuel cell (SOFC). Based on the design concept of component engineering, PrBaMn1.6X0.4O5+δ (PBMX,X = Co,Ni,Fe) layered perovskite anodes are synthesized by simple B-site doping transition metals into Pr0.5Ba0.5MnO3-δ . The effect of doping with different transition metals on the microstructure and electrochemical properties of PrBaMn2O5+δ(PBMO) is systematically investigated, and the effect of A-site defects on the PBMX anodes is further analyzed. The results show that the doping effect of Co and Ni is obviously better than that of Fe, PrBaMn1.6Co0.4O5+δ (PBMC) and PrBaMn1.6Ni0.4O5+δ (PBMN) will generate more oxygen vacancies during the reduction process, and the electrochemical properties of the materials are better. Among them, PBMC has the highest catalytic activity as an anode material, with a polarization resistance of 0.170 Ω·cm2 and a peak power density of 874 mW/cm2 at 800 ℃ in H2, showing that the enhancement of the electrochemical activity is due to the enhancement of the surface roughness and the increase of oxygen vacancies. In addition, the introduction of A-site deficiency can improve the performance of PBMX, the polarization resistance of P0.6BMC is only 0.090 Ω·cm2 and the peak power density is 952 mW/cm2 at 800 ℃.

Key words: Element-doped, Surface oxygen vacancy, Solid oxide fuel cell, Anode

中图分类号: