1 |
WANG W, SU C, WU Y, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chem Rev, 2013, 113(10): 8104-8151.
|
2 |
ZHU Y L, ZHOU W, CHEN Y B, et al. An Aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells[J]. Angew Chem Int Ed, 2016, 55(31): 8988-8993.
|
3 |
PENG J, HUANG J, WU X L, et al. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: a review[J].J Power Sources, 2021, 505: 230058.
|
4 |
ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells[J]. Mater Renew Sustain Energy, 2011: 213-223.
|
5 |
LIU M L, LYNCH M E, BLINN K, et al. Rational SOFC material design: new advances and tools[J]. Mater Today, 2011, 14(11): 534-546.
|
6 |
JIN C, YANG Z, ZHENG H, et al. La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells[J]. Electrochem Commun, 2012, 14(1): 75-77.
|
7 |
ABDALLA A M, HOSSAIN S, PETRA P M I, et al. Novel layered perovskite SmBaMn2O5+ δ for SOFCs anode material[J]. Mater Lett, 2017, 204: 129-132.
|
8 |
XU L, YIN Y M, ZHOU N, et al. Sulfur tolerant redox stable layered perovskite SrLaFeO4- δ as anode for solid oxide fuel cells[J]. Electrochem Comun 2017, 76: 51-54.
|
9 |
TRUKHANOV S, TRUKHANOV A, SZYMCZAK H, et al. Thermal stability of A-site ordered PrBaMn2O6 manganites[J]. J Phys Chem Solid, 2006, 67(4): 675-681.
|
10 |
KWON O, KIM K, JOO S, et al. Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells[J]. J Mater Chem A, 2018, 6(33): 15947-15953.
|
11 |
SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nat Mater, 2015, 14(2): 205-209.
|
12 |
HAN Z, YANG Z, HAN M, et al. Optimization of Ni-YSZ anodes for tubular SOFC by a novel and efficient phase inversion-impregnation approach[J]. J Alloys Compd, 2018, 750: 130-138.
|
13 |
VENABCIO S A, MOREIRA S B J, GOMES G G, et al. Multifunctional macroporous solid oxide fuel cell anode with active nanosized ceramic electrocatalyst[J]. Int J Hydrog Energy, 2020, 45(8): 5501-5511.
|
14 |
JANG D Y, KIM M, KIM J W, et al. High performance anode-supported solid oxide fuel cells with thin film yttria-stabilized zirconia membrane prepared by aerosol-assisted chemical vapor deposition[J]. J Electrochem Soc, 2017, 164(6): F484.
|
15 |
JO S, SHARMA B, PARK D H, et al. Materials and nano-structural processes for use in solid oxide fuel cells: a review[J]. J Korean Ceram Soc, 2020, 57(2): 135-151.
|
16 |
FUTAMURA S, MURAMOTO A, TACHIKAWA Y, et al. SOFC anodes impregnated with noble metal catalyst nanoparticles for high fuel utilization[J]. Int J Hydrog Energy, 2019, 44(16): 8502-8518.
|
17 |
HANIF M B, MOTOLA M, RAUF S, et al. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chem Eng J, 2022, 428: 132603.
|
18 |
QIN M, XIAO Y, YANG H, et al. Ru/Nb co-doped perovskite anode: achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution[J]. Appl Catal B, 2021, 299: 120613.
|
19 |
SUN Y F, ZHANG Y Q, HUA B, et al. Molybdenum doped Pr0.5Ba0.5MnO3- δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material[J]. J Power Sources, 2016, 301: 237-241.
|
20 |
CAI W, CAO D, ZHOU M, et al. Sulfur-tolerant Fe-doped La0.3Sr0.7TiO3 perovskite as anode of direct carbon solid oxide fuel cells[J]. Energy, 2020, 211: 118958.
|
21 |
LI J, WEI B, CAO Z, et al. Niobium doped lanthanum strontium ferrite as a redox-stable and sulfur-tolerant anode for solid oxide fuel cells[J]. ChemSusChem, 2018, 11(1): 254-263.
|
22 |
XIAO G, WANG S, LIN Y, et al. Ni-doped Sr2Fe1.5Mo0.5O6- δ as anode materials for solid oxide fuel cells[J]. J Electrochem Soc, 2014, 161(3): F305-F310.
|
23 |
LI R, LIU F, ZHANG C, et al. Electrical properties of Fe-doped SrTiO3 with B-site-deficient for SOFC anodes[J]. Ceram Int, 2019, 45(17): 21684-21687.
|
24 |
YOSHIYA M, FISHER C A J, IWAMOTO Y, et al. Phase stability of BaCo1- yFeyO3- δ by first principles calculations[J]. Solid State Ionics, 2004, 172(1): 159-163.
|
25 |
HE W, WU X, YANG G, et al. BaCo0.7Fe0.22Y0.08O3- δ as an active oxygen reduction electrocatalyst for low-temperature solid oxide fuel cells below 600 °C[J]. ACS Energy Lett, 2017, 2(2): 301-305.
|
26 |
DU Z H, ZHAO H L, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6-delta with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660-8669.
|
27 |
ZHANG Z, ZHU Y, ZHONG Y, et al. Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells[J]. Adv Funct Mater, 2017, 7(17): 1700242.
|
28 |
CHEN D, CHEN C, BAIYEE Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chem Rev, 2015, 115(18): 9869-9921.
|
29 |
MINESHIGEA, IZUYSU J, NAKAMURA M, et al. Introduction of a-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3- δ and its effect on structure and conductivity[J]. Solid State Ionics, 2005, 176(11-12): 1145-1149
|
30 |
CAI W, ZHOU M, CAO D, et al. Ni-doped a-site-deficient La0.7Sr0.3Cr0.5Mn0.5O3- δ perovskite as anode of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2020, 45(41): 21873-21880.
|