[1] | Service R F.Is It Time to Shoot for the Sun[J]. Science,2005,309(5734):548-551. | [2] | Potocnik J.Renewable Energy Sources and the Realities of Setting an Energy Agenda[J]. Science,2007,315(5813):810-811. | [3] | Schiermeier Q,Tollefson J,Scully T,et al. Energy Alternatives:Electricity without Carbon[J]. Nature,2008,454(7206):816-823. | [4] | Hagfeldt A,Boschloo G,Sun L,et al. Dye-Sensitized Solar Cells[J]. Chem Rev,2010,110(11):6595-6663. | [5] | O'Regan B,Grätzel M. A Low-Cost, High-Efficient Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature,1991,353(6346):737-740. | [6] | Grätzel M.Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells[J]. Inorg Chem,2005,44(20): 6841-6851. | [7] | Zhang S,Yang X,Numata Y,et al. Highly Efficient Dye-Sensitized Solar Cells:Progress and Future Challenges[J]. Energy Environ Sci,2013,6(5):1443-1464. | [8] | Chen M,Ye C,Zhou S,et al. Recent Advances in Applications and Performance of Inorganic Hollow Spheres in Devices[J]. Adv Mater,2013,44(49):5343-5351. | [9] | Qi J,Lai X,Wang J,et al. Multi-Shelled Hollow Micro-/Nanostructures[J]. Chem Soc Rev,2015,44(19):6749-6773. | [10] | Zhou L,Zhuang Z,Zhao H,et al. Intricate Hollow Structures:Controlled Synthesis and Applications in Energy Storage and Conversion[J]. Adv Mater,2017,29(20):1602914. | [11] | Mishra A,Fischer M K,Bäuerle P.Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure: Property Relationships to Design Rules[J]. Angew Chem Int Ed,2009,48(14):2474-2499. | [12] | Chung I,Lee B,He J,et al. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency[J]. Nature,2012,485(7399):486-489. | [13] | Lee C T,Peng J D,Li C T,et al. Ni3Se4 Hollow Architectures as Catalytic Materials for the Counter Electrodes of Dye-Sensitized Solar Cells[J]. Nano Energy,2014,10:201-211. | [14] | Grätzel M.Dye-Sensitized Solar Cells[J]. J Photochem Photobiol C,2003,4:145-153. | [15] | Kakiage K,Aoyama Y,Yano T,et al. Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-anchor and Carboxy-anchor Dyes[J]. Chem Commun,2015,51(88):15894. | [16] | Ning Z,Fu Y,Tian H.Improvement of Dye-Sensitized Solar Cells:What We Know and What We Need to Know[J]. Energy Environ Sci,2010,3(9):1170-1181. | [17] | Mathew S,Yella A,Gao P,et al. Dye-Sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat Chem,2014,(3):242-247. | [18] | Yella A,Lee H W,Tsao H N.Porphyrin-Sensitized Solar Cells with Cobalt(Ⅱ/Ⅲ)-based Redox Electrolyte Exceed 12 Percent Efficiency[J]. Science,2011,334(6056):629-634. | [19] | Li Z Q,Chen W C,Guo F L,et al. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-Sensitized Solar Cells with a High Efficiency Exceeding 11%[J]. Sci Rep,2015,5:14178. | [20] | Wu W Q,Xu Y F,Rao H S,et al. Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for High-Efficiency Dye-Sensitized Solar Cells[J]. J Am Chem Soc,2014,136(17):6437-6445. | [21] | Koo H J,Kim Y J,Lee Y H,et al. Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells[J]. Adv Mater,2008,20(1):195-199. | [22] | Wang Z S,Kawauchi H,Kashima T,et al. Significant Influence of TiO2 Photoelectrode Morphology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell[J]. Coord Chem Rev,2004,248(13):1381-1389. | [23] | Bach U,Lupo D,Comte P,et al. Solid-state Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies[J]. Nature,1998,395(6702):583-585. | [24] | Nazeeruddin M K,Pechy P,Renouard T,et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-based Solar Cells[J]. J Am Chem Soc,2001,123(8):1613-1624. | [25] | Jose R,Thavasi V,Ramakrishna S.Metal Oxides for Dye-Sensitized Solar Cells[J]. J Am Ceram Soc,2009,92(2):289-301. | [26] | Quintana M,Edvinsson T,Hagfeldt A,et al. Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells:Studies of Charge Transport and Carrier Lifetime[J]. J Phys Chem C,2007,111(2):1035-1041. | [27] | Zhang Q,Dandeneau C S,Zhou X,et al. ZnO Nanostructures for Dye-Sensitized Solar Cells[J]. Adv Mater,2009,21(41):4087-4108. | [28] | Gubbala S,Chakrapani V,Kumar V,et al. Band-edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells based on SnO2 Nanowires[J]. Adv Funct Mater,2008,18(16):2411-2418. | [29] | Chen J,Li C,Xu F,et al. Hollow SnO2 Microspheres for High-Efficiency Bilayered Dye Sensitized Solar Cell[J]. RSC Adv,2012,2(19):7384-7387. | [30] | Sayama K,Sugihara H,Arakawa H.Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye[J]. Chem Mater,1998,10(12):3825-3832. | [31] | Law M,Greene L E,Johnson J C,et al. Nanowire Dye-Sensitized Solar Cells[J]. Nat Mater,2005,4:455-459. | [32] | Deepak T G,Anjusree G S,Thomas S,et al. A Review on Materials for Light Scattering in Dye-sensitized Solar Cells[J]. RSC Adv,2014,4:17615. | [33] | Wang Y F,Li K N,Xu Y F,et al. Hydrothermal Fabrication of Hierarchically Macroporous Zn2SnO4 for Highly Efficient Dye-Sensitized Solar Cells[J]. Nanoscale,2013,5:5940-5948. | [34] | Xu Y,Schoonen M A A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals[J]. Am Mineral,2000,85(3/4):543-556. | [35] | Concina I,Vomiero A.Metal Oxide Semiconductors for Dye- and Quantum-Dot-Sensitized Solar Cells[J]. Small,2015,11(15):1744-1774. | [36] | Chen H Y,Kuang D B,Su C Y.Hierarchically Micro/nanostructured Photoanode Materials for Dye-Sensitized Solar Cells[J]. J Mater Chem,2012,22(31):15475-15489. | [37] | Hore S,Nitz P,Vetter C,et al. Scattering Spherical Voids in Nanocrystalline TiO2-enhancement of Efficiency in Dye-Sensitized Solar Cells[J]. Chem Commun,2005,15(15):2011-2013. | [38] | Yang S C,Yang D J,Kim J,et al. Hollow TiO2 Hemispheres Obtained by Colloidal Templating for Application in Dye-Sensitized Solar Cells[J]. Adv Mater,2008,20(5):1059-1064. | [39] | Khan J,Gu J,Meng Y,et al. Anatase TiO2 Single Crystal Hollow Nanoparticles:Their Facile Synthesis and High-performance in Dye-Sensitized Solar Cells[J]. CrystEngComm,2017,19:325-334. | [40] | Pan H,Qian J,Cui Y,et al. Hollow Anatase TiO2 Porous Microspheres with V-Shaped Channels and Exposed (101) Facets:Anisotropic Etching and Photovoltaic Properties[J]. J Mater Chem,2012,22(13):6002-6009. | [41] | Wu X,Lu G Q,Wang L.Dual-Functional Upconverter-Doped TiO2 Hollow Shells for Light Scattering and Near-Infrared Sunlight Harvesting in Dye-Sensitized Solar Cells[J]. Adv Energy Mater,2013,3(6):704-707. | [42] | Han G,Wang M,Li D,et al. Novel Upconversion Er,Yb-CeO2 Hollow Spheres as Scattering Layer Materials for Efficient Dye-sensitized Solar Cells[J]. Sol Energy Mater Sol Cells,2017,160:54-59. | [43] | Li Y Y,Wang J G,Liu X R,et al. Au/TiO2 Hollow Spheres with Synergistic Effect of Plasmonic Enhancement and Light Scattering for Improved Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces,2017,9(37):31691-31698. | [44] | Yun J,Hwang S H,Jang J.Fabrication of Au@Ag Core/Shell Nanoparticles Decorated TiO2 Hollow Structure for Efficient Light-Harvesting in Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces,2015,7(3):2055-2063. | [45] | Lü X,Huang F,Mou X,et al. A General Preparation Strategy for Hybrid TiO2 Hierarchical Spheres and Their Enhanced Solar Energy Utilization Efficiency[J]. Adv Mater,2010,22(33):3719-3722. | [46] | He C X,Lei B X,Wang Y F,et al. Sonochemical Preparation of Hierarchical ZnO Hollow Spheres for Efficient Dye-Sensitized Solar Cells[J]. Chem Eur J,2010,16(29):8757-8761. | [47] | Wang G,Zhu X,Yu J.Bilayer Hollow/Spindle-like Anatase TiO2 Photoanode for High Efficiency Dye-Sensitized Solar Cells[J]. J Power Sources,2015,278:344-351. | [48] | Zhao L,Li J,Shi Y,et al. Double Light-scattering Layer Film based on TiO2 Hollow Spheres and TiO2 Nanosheets:Improved Efficiency in Dye-Sensitized Solar Cells[J]. J Alloys Compd,2013,575(20):168-173 | [49] | Chavaa R K,Lee W M,Oh S Y,et al. Improvement in Light Harvesting and Device Performance of Dye Sensitized Solar Cells Using Electrophoretic Deposited Hollow TiO2 NPs Scattering Layer[J]. Sol Energy Mater Sol Cells,2017,161:255-262. | [50] | Yu J,Li Qn,Shu Z.Dye-sensitized Solar Cells based on Double-layered TiO2 Composite Films and Enhanced Photovoltaic Performance[J]. Electrochim Acta,2011,56(18):6293-6298. | [51] | Zhang Y,Zhang J,Wang P,et al. Anatase TiO2 Hollow Spheres Embedded TiO2 Nanocrystalline Photoanode for Dye-Sensitized Solar Cells[J]. Mater Chem Phys,2010,123(2/3):595-600. | [52] | Pang H,Yang H,Guo C X,et al. Nanoparticle Self-assembled Hollow TiO2 Spheres with well Matching Visible Light Scattering for High Performance Dye-Sensitized Solar Cells[J]. Chem Commun,2012,48(70):8832-8834. | [53] | Dadgostar S,Tajabadi F,Taghavinia N.Mesoporous Submicrometer TiO2 Hollow Spheres as Scatterers in Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces,2012,4(6):2964-2968. | [54] | Yu J,Fan J,Zhao L.Dye-Sensitized Solar Cells Based on Hollow Anatase TiO2 Spheres Prepared by Self-transformation Method[J]. Electrochim Acta,2010,55(3):597-602. | [55] | Niu L,Zhang Q,Liu J,et al. TiO2 Nanoparticles Embedded in Hollow Cube with Highly Exposed {001} Facets:Facile Synthesis and Photovoltaic Applications[J]. J Alloys Compd,2016,656:863-870. | [56] | Feng J,Hong Y,Zhang J,et al. Novel Core-Shell TiO2 Microsphere Scattering Layer for Dye-Sensitized Solar Cells[J]. J Mater Chem A,2014,2(5):1502-1508. | [57] | Bai J,Sun X,Han G,et al. Double-shell CeO2@TiO2 Hollow Spheres Composites with Enhanced Light Harvesting and Electron Transfer in Dye-Sensitized Solar Cells[J]. J Alloys Compd,2017,22:864-871. | [58] | Kay A,Grätzel M.Dye-Sensitized Core-Shell Nanocrystals:Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide[J]. Chem Mater,2002,14(7):2930-2935. | [59] | Xie F,Li Y,Dou J,et al. Facile Synthesis of SnO2 Coated Urchin-like TiO2 Hollow Microspheres as Efficient Scattering Layer for Dye-Sensitized Solar Cells[J]. J Power Sources,2016,336:143-149. | [60] | Du J,Qi J,Wang D,et al. Facile Synthesis of Au@TiO2 Core-Shell Hollow Spheres for Dye-Sensitized Solar Cells with Remarkably Improved Efficiency[J]. Energy Environ Sci,2012,5(5):6914-6918. | [61] | Thapa A,Zai J,Elbohy H,et al. TiO2 Coated Urchin-like SnO2 Microspheres for Efficient Dye-Sensitized Solar Cells[J]. Nano Research,2014,7(8):1154-1163. | [62] | Wu W Q,Xu Y F,Rao H S,et al. Constructing 3D Branched Nanowire Coated Macroporous Metal Oxide Electrodes with Homogeneous or Heterogeneous Compositions for Efficient Solar Cells[J]. Angew Chem Int Ed,2014,53(19):4816-4821. | [63] | Pan J H,Xing Wang Z,Huang Q,et al. Large-scale Synthesis of Urchin-like Mesoporous TiO2 Hollow Spheres by Targeted Etching and Their Photoelectrochemical Properties[J]. Adv Funct Mater,2014,24(1):95-104. | [64] | Wang H,Li B,Gao J,et al. SnO2 Hollow Nanospheres Enclosed by Single Crystalline Nanoparticles for Highly Efficient Dye-Sensitized Solar Cells[J]. CrystEngComm,2012,14(16):5177-5181. | [65] | Ahn S H,Kim D J,Chi W S,et al. Hierarchical Double-Shell Nanostructures of TiO2 Nanosheets on SnO2 Hollow Spheres for High-Efficiency, Solid-State, Dye-Sensitized Solar Cells[J]. Adv Funct Mater,2014,24(32):5037-5044. | [66] | Wang X,Feng J,Bai Y,et al. Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures[J]. Chem Rev,2016,116(18):10983-11060. | [67] | Wang J,Tang H,Wang H,et al. Multi-shelled Hollow Micro-/Nanostructures:Promising Platforms for Lithium-Ion Batteries[J]. Mater Chem Front,2017,1(3):414-430. | [68] | Xu H,Wang W.Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall[J]. Angew Chem Int Ed,2007,46(9):1489-1492. | [69] | Zhang H,Zhu Q,Zhang Y,et al. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties[J]. Adv Funct Mater,2007,17(15): 2766-2771. | [70] | Wang X,Wu X L,Guo Y G,et al. Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres[J]. Adv Funct Mater,2010,20(10):1680-1686. | [71] | Liu J,Hartono S B,Jin Y G,et al. A Facile Vesicle Template Route to Multi-shelled Mesoporous Silica Hollow Nanospheres[J]. J Mater Chem,2010,20(22) 4595-4601. | [72] | Xi G,Yan Y,Ma Q,et al. Synthesis of Multiple-Shell WO3 Hollow Spheres by a Binary Carbonaceous Template Route and Their Applications in Visible-Light Photocatalysis[J]. Chem Eur J,2012,18(44):13949-13953. | [73] | Lai X Y,Li J,Korgel B A,et al. General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres[J]. Angew Chem Int Ed,2011,50(12):2738-2741. | [74] | Li H,Ma H,Yang M,et al. Highly Controlled Synthesis of Multi-shelled NiO Hollow Microspheres for Enhanced Lithium Storage Properties[J]. Mater Res Bull,2017,87:224-229. | [75] | Ren H,Sun J,Yu R,et al. Controllable Synthesis of Mesostructures from TiO2 Hollow to Porous Nanospheres with Superior Rate Performance for Lithium Ion Batteries[J]. Chem Sci,2016,7(1):793-798. | [76] | Wang J,Tang H,Zhang L,et al. Multi-shelled Metal Oxides Prepared via an Anion-Adsorption Mechanism for Lithium-Ion Batteries[J]. Nat Energy,2016,1:16050. | [77] | Xu S,Hessel C,Ren H,et al. α-Fe2O3 Multi-shelled Hollow Microspheres for Lithium Ion Battery Anodes with Superior Capacity and Charge Retention[J]. Energy Environ Sci,2013,7(2):632-637. | [78] | Wang J,Yang N,Tang H,et al. Accurate Control of Multi-shelled Co3O4 Hollow Microspheres for High-Performance Anode Materials in Lithium Ion Batteries[J]. Angew Chem Int Ed,2013,52(25):6417-6420. | [79] | Ren H,Yu R,Wang J,et al. Multi-shelled TiO2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries[J]. Nano Lett,2014,14(11):6679-6684. | [80] | Wang J,Tang H,Ren H,et al. pH-Regulated Synthesis of Multi-Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates[J]. Adv Sci,2014,1(1):1719-1720. | [81] | Zhao X,Yu R,Tang H,et al. Formation of Septuple-Shelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery[J]. Adv Mater,2017,29(34):1700550. | [82] | Lai X,Halperta J E,Wang D.Recent advances in Micro-/Nano-structured Hollow Spheres for Energy Applications:From Simple to Complex Systems[J]. Energy Environ Sci,2012,5(2):5604-5618. | [83] | Qian J,Liu P,Xiao Y,et al. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells[J]. Adv Mater,2009,21(36):3663-3667. | [84] | Wu X,Lu G Q,Wang L.Shell-in-Shell TiO2 Hollow Spheres Synthesized by One-Pot Hydrothermal Method for Dye-Sensitized Solar Cell Application[J]. Energy Environ Sci,2011,4(9):3565-3572. | [85] | Hwang S H,Yun J,Jang J.Multi-Shell Porous TiO2 Hollow Nanoparticles for Enhanced Light Harvesting in Dye-Sensitized Solar Cells[J]. Adv Funct Mater,2014,24(48):7619-7626. | [86] | Dong Z,Lai X,Halpert J E,et al. Accurate Control of Multishelled ZnO Hollow Microspheres for Dye-Sensitized Solar Cells with High Efficiency[J]. Adv Mater,2012,24(8):1046-1049. | [87] | Xia W,Mei C,Zeng X,et al. Mesoporous Multi-shelled ZnO Microspheres for the Scattering Layer of Dye Sensitized Solar Cell with a High Efficiency[J]. Appl Phys Lett,2016,108:113902. | [88] | Dong Z,Ren H,Hessel C M,et al. Quintuple-Shelled SnO2 Hollow Microspheres with Superior Light Scattering for High-Performance Dye Sensitized Solar Cells[J]. Adv Mater,2014,26(6):905-909. | [89] | Yang N L.The PrThe Preparation of Nano Composites and Their Applications in Solar Energy Conversion[M]. Springer Berlin Heidelberg,2017. | [90] | N L.When Hierarchical Structure Meets the Solar Cell[J]. Sci Bull,2017,62(4):234-235. | [91] | Du J,Lai X,Yang N,et al. Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films:Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities[J]. ACS Nano,2011,5(1):590-596. | [92] | Yang Y,Jin Q,Mao Dan,et al. Dually Ordered Porous TiO2-rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion[J]. Adv Mater,2017,29(4):1604795. |
|