应用化学 ›› 2021, Vol. 38 ›› Issue (10): 1268-1298.DOI: 10.19894/j.issn.1000-0518.210385
收稿日期:
2021-08-21
接受日期:
2021-09-06
出版日期:
2021-10-01
发布日期:
2021-10-15
通讯作者:
彭海炎,解孝林
基金资助:
Dan WANG, Hai-Yan PENG(), Xing-Ping ZHOU, Xiao-Lin XIE()
Received:
2021-08-21
Accepted:
2021-09-06
Published:
2021-10-01
Online:
2021-10-15
Contact:
Hai-Yan PENG,Xiao-Lin XIE
About author:
xlxie@hust.edu.cn; hypeng@hust.edu.cn;Supported by:
摘要:
全息高分子/液晶复合材料是一类具有全息功能的结构有序复合材料,通过富高分子相与富液晶相的周期性排列,存储相干光的振幅、相位等全部信息。依据液晶含量和制备方法,全息高分子/液晶复合材料主要分为全息聚合物分散液晶 (HPDLC)、全息聚合物稳定液晶(HPSLC)、聚合物-液晶-聚合物层状物 (POLICRYPS)。主要综述了近5年HPDLC的结构及性能调控方法,概述了HPSLC和POLICRYPS的发展动态,总结了它们在高端防伪、增强现实等高新技术领域的应用,并对未来发展方向进行了展望。
中图分类号:
王丹, 彭海炎, 周兴平, 解孝林. 全息高分子/液晶复合材料的研究进展[J]. 应用化学, 2021, 38(10): 1268-1298.
Dan WANG, Hai-Yan PENG, Xing-Ping ZHOU, Xiao-Lin XIE. Research Progress of Holographic Polymer/Liquid Crystal Composites[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1268-1298.
图 2 液晶扩散、成核与体系凝胶化对HPDLC相分离结构的影响示意图[47]
Fig.2 Schematic illustration of effects of LC diffusion, nucleation and system gelation on phase separation structures of HPDLC[47]
图 3 (a)透射式全息光栅的衍射效率表征示意图;(b) 衍射光斑和透射光斑的光学照片[49]
Fig.3 (a)Schematic illustration of characterizing diffraction efficiency of transmission-type holographic gratings. (b) Photographs of diffraction and transmission spots[49]
图 6 (a) KCD/NPG光引发阻聚剂的作用原理;KCD/NPG光引发阻聚剂和Irgacure 784/BPO光引发体系在 (b) 聚合反应速率和 (c) 相分离结构方面的比较[11]。相分离结构采用扫描电子显微镜 (SEM) 表征,表征前用正己烷除去液晶
Fig.6 (a) Proposed work principle of the KCD/NPG photoinitibitor; comparison of the KCD/NPG photoinitibitor with Irgacure 784/BPO photoinitiating system on (b) polymerization rate and (c) phase separation structure[11]. Phase separation structures were characterized by scanning electron microscopy (SEM) after LC removal with n-hexane
图 7 (a)RB/NPG光引发阻聚剂的作用原理,(b)不同RB含量下的HPDLC全息光栅的衍射效率,(c)RB浓度分别为 0.9×10-3和9.4×10-3 mol/L时,HPDLC相分离结构的SEM照片[57]
Fig. 7 (a) Proposed work principle of the RB/NPG photoinitibitor, (b) diffraction efficiency of HPDLC gratings against RB concentration, (c) SEM images showing HPDLC phase separation structures at different RB concentrations[57]
图 8 (a) KCD被NPG光还原及被TA光氧化的主要反应产物; (b) KCD/TA光引发体系与 (c) KCD/NPG光引发阻聚剂在HPDLC相分离结构调控方面的比较[61-62]
Fig.8 (a) Main products during photoreduction and photooxidation of KCD in the presence of NPG and TA, respectively; Comparison of (b) KCD/TA photoinitiating system with (c) KCD/NPG photoinitibitor on the regulation of phase separation structures of HPDLC[61-62]
图 10 KCD/TA和KCD/TA/XAN体系在 (a) 聚合反应速率、(b) 光流变行为和(c) HPDLC相分离结构方面的比较[62]
Fig.10 Comparison of KCD/TA with KCD/TA/XAN on (a) polymerization rate, (b) photorheological behaviors and (c) phase separation structures of HPDLC[62]
图 12 KCD/NPG光引发阻聚剂和KCD/NPG/TA三元光引发体系在 (a) 聚合反应速率、(b) 光流变行为和 (c) HPDLC相分离结构方面的比较[63]
Fig.12 Comparison of KCD/NPG photoinitiator with KCD/NPG/TA ternary photoinitiating system on (a) polymerization rate, (b) photorheological behaviors and (c) phase separation structures of HPDLC[63]
图 13 KCD/NPG光引发阻聚剂 (左) 和KCD/NPG/TA三元光引发体系 (右) 诱导的全息光聚合反应示意图[63]
Fig. 13 Schematic illustration on holographic photopolymerization mediated by the KCD/NPG photoinitibitor (left) and KCD/NPG/TA ternary photoinitiating system (right)[63]
图 14 KCD/NPG光引发阻聚剂与KCD/TA、KCD/TA/XAN、KCD/NPG/TA体系在 (a) HPDLC电光响应能力及 (b—e) 全息图像亮度方面的比较[62]
Fig.14 Comparison of the KCD/NPG photoinitibitor with KCD/TA, KCD/TA/XAN and KCD/NPG/TA systems on (a) electro-optic response capability of HPDLC and (b—e) brightness of holographic images[62]
图 15 (a) HLCPDLC的制备过程示意图; (b) 不加电场和 (c) 施加5 V/μm电场时HLCPDLC的衍射行为;(d) 不加电场和 (e) 施加5 V/μm 电场时HLCPDLC的偏光显微镜照片;25 ℃ (f) 和44 ℃ (g) 下的HLCPDLC实物照片[78]
Fig.15 (a) Schematic illustration of fabricating HLCPDLC. Diffraction of HLCPDLC without electric field (b) and when applied 5 V/μm of electric field (c). Polarized optical microscopy (POM) images without electric field (d) and when applied 5 V/μm of electric field (e). Photographs of HLCPDLC samples at (f) 25 ℃ and (g) 44 ℃, respectively[78]
图 16 4OCB含量对 (a) HPDLC光栅衍射效率、(b) 电光响应行为和 (c) 相分离结构的影响[49,86]
Fig. 16 Effects of 4OCB content on (a) the diffraction efficiency, (b) electro-optic response and (c) phase separation structure of HPDLC gratings[49,86]
图 17 (a) 巯基乙醇修饰的ZnS纳米粒子在HPDLC中的分布示意图;ZnS纳米粒子含量对 (b) 光栅衍射效率、(c) 电光响应行为 和 (d) 相分离结构的影响[75]
Fig.17 (a) Schematic illustration of distribution of mercaptoethanol-capped ZnS nanoparticles in HPDLC. (b) Diffraction efficiency, (c) electro-optic response and (d) phase separation structures of HPDLC when varying ZnS content[75]
图 18 (a) LC-ZnS在HPDLC中的分布示意图;LC-ZnS与P0616A质量比不同时,(b) HPDLC的电光响应曲线,(c) 光散射损失 和 (d) SEM照片[90]
Fig. 18 (a) Schematic illustration of LC-ZnS distribution in HPDLC; (b) Electro-optic response, (c) light-scattering loss and (d) SEM images of HPDLC with varied weight ratios of LC-ZnS to P0616A[90]
图 19 (a) 不同种类POSS在HPDLC中的空间分布示意图. 掺杂POSS后,(b) HPDLC的衍射效率, (c) 电光响应曲线: H-1, 无POSS; H-2, 8双键POSS; H-3, 单双键POSS; H-4, 单氨基POSS[91]
Fig.19 (a) Schematic illustration of POSS distribution in HPDLC. (b) Diffraction efficiency and (c) electro-optic response of HPDLC doped with different POSS: H-1, without POSS; H-2, methacryl POSS; H-3, methacrylisobutyl POSS; H-4, aminopropylisobutyl POSS[91]
图 20 (a, b) 含UCNR的复合材料在除去液晶后的SEM照片; (c) 光栅衍射效率与UCNR含量的关系;(d) 复合材料上转换发光强度与UCNR含量的关系[95]
Fig. 20 (a, b) SEM images of UCNR-containing composites after LC removal; (c) Grating diffraction efficiency of HPDLC against UCNR content; (d) Upconversion emission intensity of composites as a function of UCNR content[95]
图 21 (a) UCNR和 (b) UCNP的透射电子显微镜照片;(c) 掺杂UCNR和 (d) UCNP的复合材料在功率为20 W 980 nm激光下的上转换发光照片[95,98]
Fig. 21 Transmission electron microscopy images of (a) UCNR and (b) UCNP. Upconversion luminescence of (c) UCNR and (d) UCNP containing composites under 980 nm laser with a power of 20 W[95,98]
图 22 (a) 反射式HPSNLC的温度响应示意图及实物照片;不同温度下HPSNLC的 (b) 透光率曲线及 (c) 反射率[106]
Fig.22(a) Schematic illustration and photos of reflection-type HPSNLC upon heating and cooling; (b) Transmittance, and (c) reflection efficiency of HPSNLC upon heating and cooling[106]
图 23 (a) HPSCLC的结构示意图;(b) 在130 V的外加电场下,PSCLC和HPSCLC的透光率曲线;(c) PSCLC和HPSCLC在530 nm处的透光率与外加电场强度的关系[108]
Fig. 23 (a) Schematic diagram of HPSCLC structure; (b) transmittance of PSCLC and HPSCLC under 130 V of applied voltage; (c) Transmittance of PSCLC and HPSCLC at the wavelength of 530 nm versus applied voltage[108]
图 24 (a) HPSBPLC成型过程示意图;(b) HPSBPLC的偏光显微镜照片;(c) HPSBPLC光栅的衍射效率与电压的关系;(d) HPSBPLC光栅的开启时间和 (e) 弛豫时间[118]
Fig. 24 (a) Schematic illustration of fabricating HPSBPLC; (b) POM image of HPSBPLC; (c) Diffraction efficiency of HPSBPLC grating versus applied voltage; (d) Rise time and (e) decay time of HPSBPLC grating[118]
图 25 (a) 反射式POLICRYPS的结构示意图, (b) 偏光显微镜照片, (c) 实物照片, (d) 在外加电场前后的反射光谱[126]
Fig.25 (a) Schematic illustration of structure, (b) POM image, (c) photograph, (d) reflection spectra of reflective POLICRYPS under zero and 3 V·μm-1 of electric field[126]
图 26 (a) 偶氮苯 (Azo-LC) 掺杂POLICRYPS在光照下的结构变化示意图;(b) 偶氮苯掺杂POLICRYPS的偏光显微镜照片;(c) 当532 nm泵浦光开/关时,偶氮苯掺杂POLICRYPS的衍射效率变化[128]
Fig.26 (a) Schematic illustration of structure change of azobenzene doped POLICRYPS under light; (b) POM image of azobenzene doped POLICRYPS; (c) Diffraction efficiency change of azobenzene doped POLICRYPS when turning on/off 532 nm pump light[128].
图 27 (a) 通过自组装构筑菱形及六边形液晶金属大环;(b) 超分子液晶金属大环用于彩色全息图像存储[10](b) Supramolecular liquid-crystalline metallacycles for holographic storage of colored images[10]
Fig.27 (a) Construction of rhomboidal and hexagonal liquid crystalline metallacycles via self-assembly;
图 28 (a) 通过液晶相变和AIEgen光环化反应调控复合材料荧光行为的示意图;(b) 全息图像与荧光图像的协同温敏响应[9]
Fig.28 (a) Schematic illustration of dialing fluorescent emission of composites via LC phase transition and AIEgen's photocyclization; (b) Cooperative-thermoresponse of holographic and fluorescent images[9]
图 30 (a) 用于AR的透射式HOE和 (b) 反射式HOE[13];(c) DigiLens公司MotoHUD型 AR产品及 (d) 工作原理示意图[14]
Fig. 30 (a) Transmissive and (b) reflective HOEs for AR[13]; (c) MotoHUD AR product by DigiLens and (d) the work principle[14]
图 31 (a) 分布反馈式激光器的光泵浦原理示意图[152];(b) 输出的激光光谱,插图为激光竖直发射的实物照片[148]
Fig. 31 (a) Schematic representation of optical pumping in distributed feedback laser[152]; (b) Output lasing spectrum with the inset showing vertical laser emission[148]
1 | GEELHAAR T, GRIESAR K, RECKMANN B. 125 years of liquid crystals-a scientific revolution in the home[J]. Angew Chem Int Ed, 2013, 52(34): 8798-8809. |
2 | YANG B, CAI F, HUANG S, et al. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties[J]. Angew Chem Int Ed, 2020, 59(10): 4035-4042. |
3 | ZOLA R S, BISOYI H K, WANG H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings[J]. Adv Mater, 2019, 31(7): 1806172. |
4 | ZHAO W, DE HAAN L T, BROER D J, et al. Photopolymerization-enforced stratification in liquid crystal materials[J]. Prog Polym Sci, 2021, 114: 101365. |
5 | KATO T, UCHIDA J, ICHIKAWA T, et al. Functional liquid crystals towards the next generation of materials[J]. Angew Chem Int Ed, 2018, 57(16): 4355-4371. |
6 | CAI F, CHEN Y X, WANG W Z, et al. Macroscopic regulation of hierarchical nanostructures in liquid-crystalline block copolymers towards functional materials[J]. Chin J Polym Sci, 2020, 39(4): 397-416. |
7 | CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives[J]. Light: Sci Appl, 2018, 7: 17168. |
8 | LI J, BISOYI H K, TIAN J, et al. Optically rewritable transparent liquid crystal displays enabled by light-driven chiral fluorescent molecular switches[J]. Adv Mater, 2019, 31(10): 1807751. |
9 | ZHAO Y, ZHAO X, LI M D, et al. Crosstalk-free patterning of cooperative-thermoresponse images by the synergy of the AIEgen with the liquid crystal[J]. Angew Chem Int Ed, 2020, 59(25): 10066-10072. |
10 | HU Y X, HAO X, XU L, et al. Construction of supramolecular liquid-crystalline metallacycles for holographic storage of colored images[J]. J Am Chem Soc, 2020, 142(13): 6285-6294. |
11 | PENG H, BI S, NI M, et al. Monochromatic visible light “photoinitibitor”: Janus-faced initiation and inhibition for storage of colored 3D images[J]. J Am Chem Soc, 2014, 136(25): 8855-8858. |
12 | HAO X, XIONG B, NI M, et al. Highly luminescent liquid crystals in aggregation based on platinum(II) complexes[J]. ACS Appl Mater Interfaces, 2020, 12(47): 53058-53066. |
13 | XIONG J, YIN K, LI K, et al. Holographic optical elements for augmented reality: principles, present status, and future perspectives[J]. Adv Photonics Res, 2020, 2(1): 2000049. |
14 | WALDERN J D, GRANT A J, POPOVICH M M, et al. DigiLens switchable Bragg grating waveguide optics for augmented reality applications[C]. Proc SPIE, 2018: 106760G. |
15 | XIONG J, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1(1): 3. |
16 | XIONG J, LI Y, LI K, et al. Aberration-free pupil steerable maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses[J]. Opt Lett, 2021, 46(7): 1760-1763. |
17 | LIANG X, CHEN M, WANG Q, et al. Active and passive modulation of solar light transmittance in a hybrid thermochromic soft-matter system for energy-saving smart window applications[J]. J Mater Chem C, 2018, 6(26): 7054-7062. |
18 | XIA Y, LIANG X, JIANG Y, et al. High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells[J]. Adv Energy Mater, 2019, 9(33): 1900720. |
19 | HU W, CHEN M, WANG Q, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via thiol-acrylate chemistry[J]. Angew Chem Int Ed, 2019, 58(20): 6698-6702. |
20 | SAED M O, AMBULO C P, KIM H, et al. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators[J]. Adv Funct Mater, 2018, 29(3): 1806412. |
21 | RYABCHUN A, LI Q, LANCIA F, et al. Shape-persistent actuators from hydrazone photoswitches[J]. J Am Chem Soc, 2019, 141(3): 1196-1200. |
22 | KOTIKIAN A, TRUBY R L, BOLEY J W, et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order[J]. Adv Mater, 2018, 30(10): 1706164. |
23 | LV J A, LIU Y, WEI J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619): 179-184. |
24 | MA S, LI X, HUANG S, et al. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface[J]. Angew Chem Int Ed, 2019, 58(9): 2655-2659. |
25 | SONG T, LEI H, CLANCY A J, et al. Supramolecular hydrogen bond enables kapton nanofibers to reinforce liquid-crystalline polymers for light-fueled flight[J]. Nano Energy, 2021, 87: 106207. |
26 | YANG X, ZHU J, YANG D, et al. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Composites Part B, 2020, 185: 107784. |
27 | ZENG H, WU J, MA Y, et al. Scalable approach to construct self-assembled graphene-based films with an ordered structure for thermal management[J]. ACS Appl Mater Interfaces, 2018, 10(48): 41690-41698. |
28 | KANG D G, KO H, KOO J, et al. Anisotropic thermal interface materials: Directional heat transfer in uniaxially oriented liquid crystal networks[J]. ACS Appl Mater Interfaces, 2018, 10(41): 35557-35562. |
29 | SAEED M H, ZHANG S, CAO Y, et al. Recent advances in the polymer dispersed liquid crystal composite and its applications[J]. Molecules, 2020, 25(23): 5510. |
30 | 张洋, 杨卫平, 赵威, 等. 聚合物稳定液晶材料研究进展[J]. 功能高分子学报, 2021, 34(1): 49-65. |
ZHANG Y, YANG W P, ZHAO W, et al. Research advance in polymer stabilized liquid crystals[J]. J Funct Polym, 2021, 34(1): 49-65. | |
31 | KAJIYAMA T, NAGATA Y, MAEMURA E, et al. Molecular motion-permeability relationships in polycarbonate/liquid crystal (EBBA) composite membrane[J]. Chem Lett, 1979, 8(6): 679-682. |
32 | DOANE J W, VAZ N A, WU B G, et al. Field controlled light scattering from nematic microdroplets[J]. Appl Phys Lett, 1986, 48(4): 269-271. |
33 | HE W L, YU M D, PANG Y J, et al. Nanoparticle-doped chiral nematic liquid-crystal composite and its effect in magnetic-response and electric-response flexible display[J]. Liq Cryst, 2018, 46(2): 249-256. |
34 | ZHANG Y, SUN J, LIU Y, et al. A flexible optically re-writable color liquid crystal display[J]. Appl Phys Lett, 2018, 112(13): 131902. |
35 | HUMAR M, RAVNIK M, PAJK S, et al. Electrically tunable liquid crystal optical microresonators[J]. Nat Photonics, 2009, 3(10): 595-600. |
36 | SOFI J A, DHARA S. Stability of liquid crystal micro-droplets based optical microresonators[J]. Liq Cryst, 2018, 46(4): 629-639. |
37 | DIERKING I. Polymer network-stabilized liquid crystals[J]. Adv Mater, 2000, 12(3): 167-181. |
38 | 倪名立, 彭海炎, 解孝林. 全息聚合物分散液晶的结构调控与性能[J]. 高分子学报, 2017(10): 1557-1573. |
NI M L, PENG H Y, XIE X L. Structure regulation and performance of holographic polymer dispersed liquid crystals[J]. Acta Polym Sin, 2017(10): 1557-1573. | |
39 | GABOR D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778. |
40 | GUO S M, LIANG X, ZHANG C H, et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals[J]. ACS Appl Mater Interfaces, 2017, 9(3):2942-2947. |
41 | DE SIO L, VELTRI A, CAPUTO R, et al. POLICRYPS composite structures: realization, characterization and exploitation for electro-optical and all-optical applications[J]. Liq Cryst Rev, 2013, 1(1): 2-19. |
42 | CAPUTO R, DE SIO L, VELTRI A, et al. Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material[J]. Opt Lett, 2004, 29(11): 1261-1263. |
43 | CAPUTO R, VELTRI A, UMETON C, et al. Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings[J]. J Opt Soc Am B, 2005, 22(4): 735-742. |
44 | ZHANG J, SPONSLER M B. Switchable liquid crystalline photopolymer media for holography[J]. J Am Chem Soc, 1992, 114(4): 1506-1507. |
45 | SUTHERLAND R L, NATARAJAN L V, TONDIGLIA V P, et al. Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes[J]. Chem Mater, 1993, 5(10): 1533-1538. |
46 | BUNNING T J, NATARAJAN L V, TONDIGLIA V P, et al. Holographic polymer-dispersed liquid crystals (H-PDLCs)[J]. Annu Rev Mater Sci, 2000, 30(1): 83-115. |
47 | BUNNING T J, NATARAJAN L V, TONDIGLIA V P, et al. Effects of eliminating the chain extender and varying the grating periodicity on the morphology of holographically written Bragg gratings[C]. Proc SPIE, 1996: 44-55. |
48 | 彭海炎. 全息光聚合物的光聚合反应、结构与性能[D]. 武汉: 华中科技大学, 2014. |
PENG H Y. Photopolymerization, structure and properties of holographic photopolymers[D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
49 | 解孝林,彭海炎,倪名立. 全息高分子材料[M]. 北京: 科学出版社, 2020: 88. |
XIE X L, PENG H Y, NI M L. Holographic Polymer Materials[M]. Beijing: Science Press, 2020: 88. | |
50 | ISO 17901-1. Optics and photonics-holography-part 1: methods of measuring diffraction efficiency and associated optical characteristics of holograms[S]. Switzerland, 2015. |
51 | 徐绍钦. 基于聚氨酯/丙烯酸酯的正交反应型全息高分子材料的性能调控[D]. 武汉: 华中科技大学, 2021. |
XU S Q. Tuning the performance of orthogonal reaction type holographic polymer materials based on polyurethane/acrylates[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
52 | NATARAJAN L V, BROWN D P, WOFFORD J M, et al. Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization[J]. Polymer, 2006, 47(12): 4411-4420. |
53 | XIE X L, PENG H Y, ZHOU X P, et al. Visible light photoinitiating system for preparing high diffraction efficiency hologram optical polymer material: US, 9753431 B2[P]. 2017-09-05. |
54 | PENG H, NI M, BI S, et al. Highly diffractive, reversibly fast responsive gratings formulated through holography[J]. RSC Adv, 2014, 4(9): 4420-4426. |
55 | NI M, PENG H, LIAO Y, et al. 3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”[J]. Macromolecules, 2015, 48(9): 2958-2966. |
56 | 陈冠楠. 全息光聚合物/液晶复合材料的相分离结构调控与光栅性能[D]. 武汉: 华中科技大学, 2020. |
CHEN G N. Regulating the phase separation structure and grating performance of holographic photopolymer/liquid crystal composites[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
57 | CHEN G, NI M, PENG H, et al. Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals[J]. ACS Appl Mater Interfaces, 2017, 9(2): 1810-1819. |
58 | YU R, LI S, CHEN G, et al. Monochromatic “photoinitibitor”-mediated holographic photopolymer electrolytes for lithium-ion batteries[J]. Adv Sci, 2019, 6(10): 1900205. |
59 | ZHAO C, HE B, WANG G, et al. Hierarchical PEG-based 3D patterns grafting from polymer substrate by surface initiated visible light photolithography[J]. Macromol Rapid Commun, 2016, 37(19): 1611-1617. |
60 | CHARLOT V, IBRAHIM A, BESSIÈRES M, et al. Influence of the photoinitiating system on the properties of photopolymerized methylmethacrylate: the role of the ketyl radical in type II photoinitiators[J]. Polym Chem, 2021, 12(9): 1210-1216. |
61 | ZHAO X, ZHAO Y, LI M D, et al. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization[J]. Nat Commun, 2021, 12(1): 2873. |
62 | 赵骁宇. 基于香豆素酮的光聚合反应、全息记录与3D打印[D]. 武汉: 华中科技大学, 2021. |
ZHAO X Y. Ketocoumarin-based photopolymerization, holographic recording and 3D printing[D].Wuhan: Huazhong University of Science and Technology, 2021. | |
63 | ZHAO X, SUN S, ZHAO Y, et al. Effect of ketyl radical on the structure and performance of holographic polymer/liquid-crystal composites[J]. Sci China Mater, 2019, 62(12): 1921-1933. |
64 | GROTZINGER C, BURGET D, FOUASSIER P J J P. Photopolymerization reactions initiated by a visible light photoinitiating system: dye/amine/bis(trichloromethyl)-substituted-1,3,5-triazine[J]. Macromol Chem Phys, 2001, 202(18): 3513-3522. |
65 | FOUASSIER J P, ALLONAS X, BURGET D. Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications[J]. Prog Org Coat, 2003, 47(1): 16-36. |
66 | SARKAR M D, GILL N L, WHITEHEAD J B, et al. Effect of monomer functionality on the morphology and performance of the holographic transmission gratings recorded on polymer dispersed liquid crystals[J]. Macromolecules, 2003, 36(3):630-638. |
67 | RAMSEY R A, SHARMA S C. Effects of monomer functionality on switchable holographic gratings formed in polymer-dispersed liquid-crystal cells[J]. ChemPhysChem, 2009, 10(3): 564-570. |
68 | PARK M S, KIM B K. Transmission holographic gratings produced using networked polyurethane acrylates with various functionalities[J]. Nanotechnology, 2006, 17(8): 2012-2017. |
69 | ZHU X, ZHOU Y, YAN D. Influence of branching architecture on polymer properties[J]. J Polym Sci, Part B: Polym Phys, 2011, 49(18): 1277-1286. |
70 | KAISER T, FREY H. Hyperbranched polymer architectures: from Flory's AB(f-1) polycondensates to controlled structures[J]. Polymer, 2020, 211: 123113. |
71 | SCHULTE M D, CLARSON S J, NATARAJAN L V, et al. The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals[J]. Liq Cryst, 2000, 27(4): 467-475. |
72 | 宋静, 郑致刚, 刘永刚, 等. 含氟单体材料对全息聚合物分散液晶Bragg光栅电光特性的影响[J]. 液晶与显示, 2006(5): 443-446. |
SONG J, ZHENG Z G, LIU Y G, et al. Influence of fluorinated methacrylate monomerson electro-optical characteristics of HPDLC Bragg gratings[J]. Chin J Liq Cryst Disp, 2006(5): 443-446. | |
73 | AGASANDYAN V A, TROSMAN E A, BAGDASAR'YAN K S, et al. Determination of absolute rate constants of chain propagation and termination in the polymerization of N-vinylpyrrolidone[J]. Polym Sci USSR, 1966, 8(9): 1742-1748. |
74 | WHITE T J, LIECHTY W B, NATARAJAN L V, et al. The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs)[J]. Polymer, 2006, 47(7): 2289-2298. |
75 | NI M, CHEN G, SUN H, et al. Well-structured holographic polymer dispersed liquid crystals by employing acrylamide and doping ZnS nanoparticles[J]. Mater Chem Front, 2017, 1(2): 294-303. |
76 | 倪名立. 结构有序聚合物复合材料的激光全息加工、结构与性能[D]. 武汉: 华中科技大学, 2017. |
NI M L. Laser holographic processing, structures and properties of polymer composites with ordered structure[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
77 | YAMADA B, YOSHIOKA M, OTSU T. Rate constants of elementary reactions in radical polymerization of N,N-dimethylacrylamide[J]. Kobunshi Ronbunshu, 1978, 35:795-801. |
78 | DE SIO L, LLOYD P F, TABIRYAN N V, et al. Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films[J]. ACS Appl Mater Interfaces, 2018, 10(15): 13107-13112. |
79 | DE SIO L, LLOYD P F, TABIRYAN N V, et al. Thermoplasmonic activated reverse-mode liquid crystal gratings[J]. ACS Appl Nano Mater, 2019, 2(5): 3315-3322. |
80 | NATARAJAN L V, SHEPHERD C K, BRANDELIK D M, et al. Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization[J]. Chem Mater, 2003, 15(12): 2477-2484. |
81 | SUTHERLAND R L, TONDIGLIA V P, NATARAJAN L V, et al. Coherent diffraction and random scattering in thiol-ene-based holographic polymer-dispersed liquid crystal reflection gratings[J]. J Appl Phys, 2006, 99(12): 123104. |
82 | WHITE T J, NATARAJAN L V, TONDIGLIA V P, et al. Monomer functionality effects in the formation of thiol-ene holographic polymer dispersed liquid crystals[J]. Macromolecules, 2007, 40(4): 1121-1127. |
83 | DATE M, TAKEUCHI Y, TANAKA K, et al. Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)[J]. J Soc Inf Disp, 1999, 7(1): 17. |
84 | JAKUBIAK R, BROWN D P, NATARAJAN L V, et al. Influence of morphology on the lasing behavior of pyrromethene 597 in a holographic polymer dispersed liquid crystal reflection grating[C]. Proc SPIE, 2006: 63220A. |
85 | FENOLL S, BROCAL F, SEGURA J D, et al. Holographic characteristics of photopolymers containing different mixtures of nematic liquid crystals[J]. Polymers, 2019, 11(2): 325. |
86 | PENG H, YU L, CHEN G, et al. Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology[J]. RSC Adv, 2017, 7(82): 51847-51857. |
87 | LIU Y, ZHENG J, SHEN T, et al. Diffusion kinetics investigations of nano Ag-doped holographic polymer dispersed liquid crystal gratings[J]. Liq Cryst, 2019, 46(12): 1852-1860. |
88 | WANG K, ZHENG J, GUI K, et al. Improvement on the performance of holographic polymer-dispersed liquid crystal gratings with surface plasmon resonance of Ag and Au nanoparticles[J]. Plasmonics, 2014, 10(2): 383-389. |
89 | WANG K, ZHENG J, CHEN Y, et al. Design of dynamic gain equalizer with H-PDLC reflection gratings doped with Ag nanoparticles[J]. IEEE Photonic Technol Lett, 2015, 27(10): 1048-1051. |
90 | PENG H, YU L, CHEN G, et al. Liquid crystalline nanocolloids for the storage of electro-optic responsive images[J]. ACS Appl Mater Interfaces, 2019, 11(8): 8612-8624. |
91 | NI M, CHEN G, WANG Y, et al. Holographic polymer nanocomposites with ordered structures and improved electro-optical performance by doping poss[J]. Composites Part B, 2019, 174: 107045. |
92 | ZHOU H, YE Q, XU J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications[J]. Mater Chem Front, 2017, 1(2): 212-230. |
93 | KUO S W, CHANG F C. POSS related polymer nanocomposites[J]. Prog Polym Sci, 2011, 36(12): 1649-1696. |
94 | BUSBEE J D, YUHL A T, NATARAJAN L V, et al. SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer-dispersed liquid crystals[J]. Adv Mater, 2009, 21(36): 3659-3662. |
95 | ZHANG X, YAO W, ZHOU X, et al. Holographic polymer nanocomposites with simultaneously boosted diffraction efficiency and upconversion photoluminescence[J]. Compos Sci Technol, 2019, 181: 107705. |
96 | WEN S, ZHOU J, ZHENG K, et al. Advances in highly doped upconversion nanoparticles[J]. Nat Commun, 2018, 9(1):2415. |
97 | YAO W, TIAN Q, WU W. Tunable emissions of upconversion fluorescence for security applications[J]. Adv Opt Mater, 2018, 7(6): 1801171. |
98 | LUO W, NI M, ZHOU X, et al. Holographic polymer nanocomposites with both high diffraction efficiency and bright upconversion emission by incorporating liquid crystals and core-shell structured upconversion nanoparticles[J]. Composites Part B, 2020, 199: 108290. |
99 | DIERKING I. Recent developments in polymer stabilised liquid crystals[J]. Polym Chem, 2010, 1(8): 1153-1159. |
100 | BROER D J, BOVEN J, MOL G N, et al. In⁃situ photopolymerization of oriented liquid-crystalline acrylates, 3. Oriented polymer networks from a mesogenic diacrylate[J]. Makromol Chem, 1989, 190(9): 2255-2268. |
101 | BROER D J, FINKELMANN H, KONDO K. In⁃situ photopolymerization of an oriented liquid-crystalline acrylate[J]. Makromol Chem, 1988, 189(1): 185-194. |
102 | BROER D J, MOL G N, CHALLA G. In situ photopolymerization of an oriented liquid-crystalline acrylate, 2[J]. Makromol Chem, 1989, 190(1): 19-30. |
103 | KOSSYREV P, SOUSA M E, CRAWFORD G. One- and two-dimensionally structured polymer networks in liquid crystals for switchable diffractive optical applications[J]. Adv Funct Mater, 2004, 14(12): 1227-1232. |
104 | URBAS A, TONDIGLIA V, NATARAJAN L, et al. Optically switchable liquid crystal photonic structures[J]. J Am Chem Soc, 2004, 126(42): 13580-13581. |
105 | TONG X, WANG G, YAVRIAN A, et al. Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals[J]. Adv Mater, 2005, 17(3): 370-374. |
106 | LEE K M, TONDIGLIA V P, GODMAN N P, et al. Reconfigurable reflective colors in holographically patterned liquid crystal gels[J]. ACS Photonics, 2020, 7(8): 1978-1982. |
107 | ST JOHN W D, FRITZ W J, LU Z J, et al. Bragg reflection from cholesteric liquid crystals[J]. Phys Rev E, 1995, 51(2): 1191-1198. |
108 | BECKEL E R, NATARAJAN L V, TONDIGLIA V P, et al. Electro-optical properties of holographically patterned polymer-stabilized cholesteric liquid crystals[J]. Liq Cryst, 2007, 34(10): 1151-1158. |
109 | HIKMET R A M, KEMPERMAN H. Electrically switchable mirrors and optical components made from liquid-crystal gels[J]. Nature, 1998, 392(6675): 476-479. |
110 | DUAN M Y, CAO H, WU Y, et al. Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization[J]. Phys Chem Chem Phys, 2017, 19(3): 2353-2358. |
111 | ZHANG D, CAO H, DUAN M, et al. Effect of monomer composition on the performance of polymer-stabilized liquid crystals with two-step photopolymerization[J]. J Polym Sci, Part B: Polym Phys, 2019, 57(17): 1126-1132. |
112 | NATARAJAN L V, BECKEL E R, TONDIGLIA V P, et al. The effect of weak polymer stabilization on the switching properties of cholesteric liquid crystals[J]. Mol Cryst Liq Cryst, 2009, 502(1): 143-153. |
113 | COLES H J, PIVNENKO M N. Liquid crystal 'blue phases' with a wide temperature range[J]. Nature, 2005, 436(7053): 997-1000. |
114 | KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases[J]. Nat Mater, 2002, 1(1): 64-68. |
115 | CASTLES F, DAY F V, MORRIS S M, et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications[J]. Nat Mater, 2012, 11(7): 599-603. |
116 | HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases[J]. Adv Mater, 2005, 17(1): 96-98. |
117 | WANG L, HE W, WANG Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals[J]. J Mater Chem C, 2013, 1(40): 6526. |
118 | YUAN Y, LI Y, CHEN C P, et al. Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light[J]. Opt Express, 2015, 23(15): 20007-20013. |
119 | CAPUTO R, SUKHOV A V, TABIRYAN N V, et al. Efficiency dynamics of diffraction gratings recorded in liquid crystalline composite materials by a UV interference pattern[J]. Chem Phys, 1999, 245(1): 463-471. |
120 | CAPUTO R, SUKHOV A V, UMETON C, et al. Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures[J]. J Exp Theor Phys, 2000, 91(6): 1190-1197. |
121 | CAPUTO R, SUKHOV A V, TABIRIAN N V, et al. Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium[J]. Chem Phys, 2001, 271(3): 323-335. |
122 | D'ALESSANDRO A, ASQUINI R, GIZZI C, et al. Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices[J]. Opt Lett, 2004, 29(12): 1405-1407. |
123 | CAPUTO R, VELTRI A, UMETON C P, et al. Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure[J]. J Opt Soc Am B, 2004, 21(11): 1939-1947. |
124 | ABBATE G, VITA F, MARINO A, et al. New generation of holographic gratings based on polymer-LC composites: POLICRYPS and POLIPHEM[J]. Mol Cryst Liq Cryst, 2006, 453(1): 1-13. |
125 | DE SIO L, FERJANI S, STRANGI G, et al. Universal soft matter template for photonic applications[J]. Soft Matter, 2011, 7(8): 3739. |
126 | DE SIO L, TABIRYAN N, BUNNING T J. POLICRYPS-based electrically switchable Bragg reflector[J]. Opt Express, 2015, 23(25): 32696-32702. |
127 | DE SIO L, VELTRI A, UMETON C, et al. All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds[J]. Appl Phys Lett, 2008, 93(18): 181115. |
128 | DE SIO L, SERAK S, TABIRYAN N, et al. Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching[J]. Adv Mater, 2010, 22(21): 2316-2319. |
129 | ABDOLLAHI A, ROGHANI-MAMAQANI H, RAZAVI B, et al. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: recent advances and future challenges[J]. ACS Nano, 2020, 14(11): 14417-14492. |
130 | HONG W, YUAN Z, CHEN X. Structural color materials for optical anticounterfeiting[J]. Small, 2020, 16(16):1907626. |
131 | YU X, ZHANG H, YU J. Luminescence anti-counterfeiting: From elementary to advanced[J]. Aggregate, 2021, 2(1):20-34. |
132 | Anti-counterfeit packaging technologies market size, market share, application analysis, regional outlook, growth trends, key players, competitive strategies and forecasts, 2020 to 2028[Z]. [2020-10-08]https://www.researchandmarkets.com/reports/5230050/anti-counterfeit-packaging-technologies-market#pos-5230052. |
133 | ARPPE R, SØRENSEN T J. Physical unclonable functions generated through chemical methods for anti-counterfeiting[J]. Nat Rev Chem, 2017, 1(4): 0031. |
134 | HAASE M, SCHÄFER H. Upconverting nanoparticles[J]. Angew Chem Int Ed, 2011, 50(26): 5808-5829. |
135 | ZHOU B, SHI B, JIN D, et al. Controlling upconversion nanocrystals for emerging applications[J]. Nat Nanotechnol, 2015, 10(11): 924-936. |
136 | ZHOU B, YAN L, HUANG J, et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice[J]. Nat Photonics, 2020, 14(12): 760-766. |
137 | REN W, LIN G, CLARKE C, et al. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting[J]. Adv Mater, 2020, 32(18): 1901430. |
138 | ZHENG K, HAN S, ZENG X, et al. Rewritable optical memory through high-registry orthogonal upconversion[J]. Adv Mater, 2018, 30(30): 1801726. |
139 | ZHU X, ZHANG J, LIU J, et al. Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications[J]. Adv Sci, 2019, 6(22): 1901358. |
140 | NI M, LUO W, WANG D, et al. Orthogonal reconstruction of upconversion and holographic images for anticounterfeiting based on energy transfer[J]. ACS Appl Mater Interfaces, 2021, 13(16): 19159-19167. |
141 | DENG H, CHEN C, HE M Y, et al. High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element[J]. J Opt Soc Am A, 2019, 36(4): 588-593. |
142 | LI G, LEE D, JEONG Y, et al. Holographic display for see-through augmented reality using mirror-lens holographic optical element[J]. Opt Lett, 2016, 41(11): 2486-2489. |
143 | POPOVICH M, SAGAN S. Application specific integrated lenses for displays[C]. SID Int Symp Dig Tech Pap, 2000, 31(1): 1060-1063. |
144 | SAGAN S F, SMITH R, POPOVICH M. DigiLens color sequential filtering for microdisplay-based projection application[C]. Proc SPIE, 2000, 4093: 281-287. |
145 | WALDERN J D, ABRAHAM S, POPOVICH M M, et al. DigiLens holographic photopolymers for wide angle AR waveguides: photosensitive materials and their applications[C]. Proc SPIE, 2020: 11367. |
146 | KOGELNIK H, SHANK C V. Coupled-wave theory of distributed feedback lasers[J]. J Appl Phys, 1972, 43(5): 2327-2335. |
147 | LIU Y J, SUN X W. Holographic polymer-dispersed liquid crystals: materials, formation, and applications[J]. Adv Optoelectron, 2008: 1-52. |
148 | LIU L, KONG X, WANG Q, et al. High pump efficiency of a second-order distributed feedback laser based on holographic polymer dispersed liquid crystals with preferred liquid crystal molecular orientation[J]. J Mater Chem C, 2018, 6(35): 9517-9522. |
149 | LIU L, HUANG W, DIAO Z, et al. Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through forster transfer[J]. Liq Cryst, 2013, 41(2): 145-152. |
150 | LIU L, XUAN L, ZHANG G, et al. Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer[J]. J Mater Chem C, 2015, 3(21): 5566-5572. |
151 | LIU M, LIU Y, ZHANG G, et al. Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer[J]. Liq Cryst, 2016, 43(3): 417-426. |
152 | DIAO Z, DENG S, HUANG W, et al. Organic dual-wavelength distributed feedback laser empowered by dye-doped holography[J]. J Mater Chem, 2012, 22(44): 23331. |
153 | DIAO Z, XUAN L, LIU L, et al. A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye[J]. J Mater Chem C, 2014, 2(30): 6177. |
154 | LIU L, KONG X, LIU Y, et al. Electrically tunable dual-wavelength organic laser based on holographic polymer dispersed liquid crystal grating[J]. Org Electron, 2019, 74: 161-165. |
155 | BARNA V, CAPUTO R, DE LUCA A, et al. Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities[J]. Opt Express, 2006, 14(7): 2695-2705. |
[1] | 陶雨晨, 候晓慧, 尹登科, 杨晔. 基于电场调控的胆固醇基液晶薄膜对成纤维细胞生长分化的影响[J]. 应用化学, 2023, 40(4): 546-553. |
[2] | 潘勇, 齐延新, 李晓媛, 黄宇彬. 基于高分子的疫苗递送系统构建和应用[J]. 应用化学, 2021, 38(5): 582-591. |
[3] | 邹呈, 高延子, 于美娜, 肖久梅, 张兰英, 杨槐. 液晶/高分子复合材料及其在反式电控调光膜中的应用研究进展[J]. 应用化学, 2021, 38(10): 1213-1225. |
[4] | 纪宇帆, 蔡锋, 于海峰. 液晶聚合物的表面形貌光调控研究进展[J]. 应用化学, 2021, 38(10): 1226-1237. |
[5] | 罗龙飞, 李玉洁, 沈志豪, 郑世军, 范星河. 偶氮苯液晶嵌段共聚物薄膜自组装和光响应性研究进展[J]. 应用化学, 2021, 38(10): 1238-1254. |
[6] | 陈爱华, 张承鋆, 邓子超, 孙亚兰. 液晶嵌段共聚物液相自组装体的结构调控[J]. 应用化学, 2021, 38(10): 1255-1267. |
[7] | 张帅, 杨洋, 吉岩, 危岩. 磁响应液晶弹性体材料研究进展[J]. 应用化学, 2021, 38(10): 1299-1309. |
[8] | 洪卫, 王立权, 林嘉平. 高分子多级微相结构与性能的研究进展[J]. 应用化学, 2021, 38(10): 1310-1325. |
[9] | 崔永杰, 钟佳鑫, 廖勋凡, 陈义旺. 液晶分子在有机太阳能电池中的应用研究进展[J]. 应用化学, 2021, 38(10): 1326-1339. |
[10] | 张昭永, 李谦, 王大霖, 方江邻, 谌东中. 含侧链盘状苯并菲和棒状偶氮苯的二嵌段液晶共聚物的可控合成及其光物理性质[J]. 应用化学, 2021, 38(10): 1340-1352. |
[11] | 邓媛, 范遥见, 陶磊, 骆支旺, 谢鹤楼. 含有偶氮苯液晶纳米粒子的合成及其超分子结构和光控取向行为[J]. 应用化学, 2021, 38(10): 1353-1361. |
[12] | 骆沙曼, 孙浩哲, 颜世强, 黄晖, 张炜佳, 韦嘉, 俞燕蕾. 含偶氮苯的光致形变液晶聚合物的细胞生物相容性[J]. 应用化学, 2021, 38(10): 1371-1381. |
[13] | 顾军渭, 程蓓, 杨旭彤. 液晶功能化氮化硼/液晶环氧树脂导热复合材料的制备[J]. 应用化学, 2021, 38(10): 1382-1388. |
[14] | 翟飞, 封伟. 4D打印液晶弹性体软体机器人及其热致运动行为[J]. 应用化学, 2021, 38(10): 1389-1396. |
[15] | 胡文婷, 左波, 聂振洲, 王猛, 杨洪. 光驱动液晶弹性体扭曲环带软致动器的有限元分析[J]. 应用化学, 2021, 38(10): 1397-1404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||