1 |
王威, 王晓振, 程伏涛, 等. 基于光响应高分子材料的柔性执行器件[J]. 化学进展, 2011, 23(6): 1165-1173.
|
|
WANG W, WANG X Z, CHENG F T, et al. Light-driven soft actuators based on photoresponsive polymer materials[J].Prog Chem, 2011, 23(6): 1165-1173.
|
2 |
YU Y L, NAKANO M, IKEDA T. Photomechanics: directed bending of a polymer film by light[J]. Nature, 2003, 425(6954): 145-145.
|
3 |
FINKELMANN H, NISHIKAWA E, PEREIRA G G,et al. A new opto-mechanical effect in solids[J]. Phys Rev Lett, 2001, 87(1): 015501.
|
4 |
LI M H, KELLER P, LI B, et al. Light-driven side-on nematic elastomer actuators[J]. Adv Mater, 2003, 15(7/8): 569-572.
|
5 |
WANG M, LIN B P, YANG H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes[J]. Nat Commun, 2016, 7: 13981.
|
6 |
IAMSAARD S, APHOFF S J, MATT B, et al. Conversion of light into macroscopic helical motion[J]. Nat Chem, 2014, 6(3): 229-235.
|
7 |
LV J A, LIU Y Y, WEI J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619): 179-184.
|
8 |
PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators[J]. Adv Mater, 2019, 31(52): 1904224.
|
9 |
XIE K N, YANG Y H, JIANG H Y. Controlling cellular volume via mechanical and physical properties of substrate[J]. Biophys J, 2018, 114(3): 675-687.
|
10 |
FUSCO S, PANZETTA V, EMBRION U, et al. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions[J]. Acta Biomater, 2015, 23: 63-71.
|
11 |
LIN X X, SHI Y, CAO Y L, et al. Recent progress in stem cell differentiation directed by material and mechanical cues[J]. Biomed Mater, 2016, 11(1): 014109.
|
12 |
WALA J, MAJI D, DAS S. Influence of physico-mechanical properties of elastomeric material for different cell growth[J]. Biomed Mater, 2017, 12(6): 065002.
|
13 |
BOYAN B D, LOTZ E M, SCHWARTZ Z. Roughness and hydrophilicity as osteogenic biomimetic surface properties[J]. Tissue Eng Part A, 2017, 23(23/24): 1479-1489.
|
14 |
XIA J, YUAN Y, WU HY, et al. Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells[J]. Biomaterials, 2020, 248: 120014.
|
15 |
OZDEMIR Z, OZDEMIR A, BASIM G B. Application of chemical mechanical polishing process on titanium based implants[J]. Mat Sci Eng C-Mater, 2016, 68: 383-396.
|
16 |
JANMEY P A, FLETCHER D A, REINHART-KING C A. Stiffness sensing by cells[J]. Physiol Rev, 2020, 100(2): 695-724.
|
17 |
WANG H B, DEMBO M, WANG Y L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells[J]. Am J Physiol-Cell Ph, 2000, 279(5): C1345-C1350.
|
18 |
PANDAMOOZ S, TAFARI A, SALEHI M S et al. Substrate stiffness affects the morphology and gene expression of epidermal neural crest stem cells in a short term culture[J]. Biotechnol Bioeng, 2020, 117(2): 305-317.
|
19 |
SAWASE T, JIMBO R, BABA K, et al. Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition[J]. Clin Oral Implants Res, 2008, 19(5): 491-496.
|
20 |
SENGUPTA P, SURWASE S S, PRASAD B L. Modification of porous polyethylene scaffolds for cell attachment and proliferation[J]. Int J Nanomed, 2018, 13: 87-90.
|
21 |
STÖBENER D D, HOPPENSACK A, SCHOLZ J, et al. Endothelial, smooth muscle and fibroblast cell sheet fabrication from self-assembled thermoresponsive poly(glycidyl ether) brushes[J]. Soft Matter, 2018, 14(41): 8333-8343.
|
22 |
ALDHALEAI A, TSAI P A. Fabrication of transparent and microstructured superhydrophobic substrates using additive manufacturing[J]. Langmuir, 2021, 37(1): 348-356.
|
23 |
KANUNGO M, METTU S, LAW K Y, et al. Effect of roughness geometry on wetting and dewetting of rough PDMS surfaces[J]. Langmuir, 2014, 30(25): 7358-7368.
|
24 |
LEE J N, JIANG X Y, RYAN D, et al. Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane)[J]. Langmuir, 2004, 20(26): 11684-11691.
|
25 |
NG J M K, GITLIN I, STROOCK A D, et al. Components for integrated poly(dimethylsiloxane) microfluidic systems[J]. Electrophoresis, 2002, 23(20): 3461-3473.
|
26 |
DOKUKIN M E, SOKOLOV I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and Peak Force QNM AFM modes[J]. Langmuir, 2012, 28(46): 16060-16071.
|
27 |
ZHAO Y P, TRUCKENMULLER R, LEVERS M B, et al. High-definition micropatterning method for hard, stiff and brittle polymers[J]. Mater Sci Eng C-Mater, 2017, 71: 558-564.
|
28 |
FITZGERALD M L, TSAI S, BELLAN L M, et al. The Relationship between the Young's modulus and dry etching rate of polydimethylsiloxane (PDMS)[J]. Biomed Microdev, 2019, 21(1): 26.
|