应用化学 ›› 2021, Vol. 38 ›› Issue (10): 1255-1267.DOI: 10.19894/j.issn.1000-0518.210363
收稿日期:
2021-07-26
接受日期:
2021-08-23
出版日期:
2021-10-01
发布日期:
2021-10-15
通讯作者:
陈爱华
基金资助:
Ai-Hua CHEN1,2(), Cheng-Yun ZHANG1, Zi-Chao DENG1, Ya-Lan SUN1
Received:
2021-07-26
Accepted:
2021-08-23
Published:
2021-10-01
Online:
2021-10-15
Contact:
Ai-Hua CHEN
About author:
chenaihua@buaa.edu.cnSupported by:
摘要:
液晶化作用可作为一种外加驱动力,引入嵌段共聚物自组装体系中用以调控聚集体形成各向异性形貌。主链型液晶高分子刚性强,聚合难度大,而侧链型液晶高分子柔性间隔基可调,且适用于活性聚合,故侧链型液晶高分子嵌段共聚物的自组装行为获得了广泛的关注。本综述结合嵌段共聚物的液相自组装方法,从液晶基元种类、液晶相态以及功能化等方面总结了近年来侧链型液晶高分子嵌段共聚物溶液自组装体结构调控的研究与动态。最后,本综述总结了近年侧链型液晶高分子嵌段共聚物自组装相关研究工作的进展,并对其发展趋势进行了展望。
中图分类号:
陈爱华, 张承鋆, 邓子超, 孙亚兰. 液晶嵌段共聚物液相自组装体的结构调控[J]. 应用化学, 2021, 38(10): 1255-1267.
Ai-Hua CHEN, Cheng-Yun ZHANG, Zi-Chao DENG, Ya-Lan SUN. Structure Control of Liquid Crystalline Block Copolymers in Liquid⁃Phase Self⁃assembly[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1255-1267.
图3 含偶氮苯液晶基元的三臂树枝状两亲性液晶嵌段共聚物的溶液自组装[42]
Fig.3 Solution self-assembly of three-arm dendritic amphiphilic liquid crystalline block copolymer containing azobenzene mesogen[42]
图4 (a)光交联下Janus单链纳米粒子的自组装示意图;(b)不同光照时间和PPEGMA质量分数条件下的粒子形貌相图[43]
Fig.4 (a) Schematic diagram of the self-assembly of Janus single-stranded nanoparticles under photocrosslinking; (b) Phase diagram of particle morphology under different light time and PPEGMA mass fraction conditions[43]
图5 甲壳型液晶嵌段共聚物溶液自组装制备反相双连续结构聚合物粒子[46]
Fig.5 Self-assembly of mesogen-jacketed liquid crystalline block copolymer solution to prepare polymer particles with reversed bicontinuous structure[46]
图6 PEO-b-PMAAz雪人状Janus纳米粒子的光控“自吞噬”示意图[35]
Fig.6 Schematic diagram of light-controlled "self-engulf" of PEO-b-PMAAz snowman-shaped Janus nanoparticles[35]
图8 PISA结合种子法制备PDMA-b-PBzMA-b-PFMA三嵌段液晶聚合物纳米粒子[53]
Fig.8 PISA combined with seed method to prepare PDMA-b-PBzMA-b-PFMA triblock liquid crystal polymer nanoparticles[53]
图9 (a)PMAA-b-PMAAz聚合诱导分层自组装成各向异性聚合物粒子;(b)PMAA-b-PMAAz的粒子形貌相图[57]
Fig.9 (a) Polymerization-induced hierarchical self-assembly of PMAA-b-PMAAz into anisotropic polymer particles; (b) Phase diagram of PMAA-b-PMAAz particle morphology[57]
图10 含二苯代乙烯液晶基元的嵌段共聚物聚合诱导自组装成纳米线[58]
Fig.10 Polymerization-induced hierarchical self-assembly of block copolymers containing diphenylethylene mesogens into nanowires[58]
图11 (a)PLMA-b-PMAStb、(b)PDMA-b-PMA11Bi和(c)PMAA-b-PMAAz体系纳米粒子典型的高倍TEM照片和SAXS曲线[59]
Fig.11 High magnification TEM photos and SAXS curves of (a) PLMA-b-PMAStb, (b) PDMA-b-PMA11Bi and (c) PMAA-b-PMAAz system nanoparticles[59]
样品 Sample | 转变温度 | 转变焓 | ||
---|---|---|---|---|
TS-Smb/℃ | TSm-Ic/℃ | ΔHS-Smb/(J·g-1) | ΔHSm-Ic/(J·g-1) | |
PMAAz57[ | 69.5 | 117.7 | 6.0 | 15.9 |
PMA11Bi91a | 116.7 | 148.8 | 7.4 | 16.8 |
PMAStb31[ | 151.1 | 165.8 | 13.1 | 18.2 |
表1 不同液晶均聚物的热性质[59]
Table 1 Thermal properties of different liquid crystalline homopolymers[59]
样品 Sample | 转变温度 | 转变焓 | ||
---|---|---|---|---|
TS-Smb/℃ | TSm-Ic/℃ | ΔHS-Smb/(J·g-1) | ΔHSm-Ic/(J·g-1) | |
PMAAz57[ | 69.5 | 117.7 | 6.0 | 15.9 |
PMA11Bi91a | 116.7 | 148.8 | 7.4 | 16.8 |
PMAStb31[ | 151.1 | 165.8 | 13.1 | 18.2 |
图12 (a)PDMAEMA-b-PMMAz聚合诱导自组装示意图;(b)线性PDMAEMA体系得到纳米线结构;(c)带电荷体系得到方形粒子组成的“项链状”纳米纤维;(d)交联后得到“空心砖”状粒子[61]
Fig.12 (a) PDMAEMA-b-PMMAz polymerization-induced self-assembly diagram; (b) Nanowire structure are obtained in linear PDMAEMA system; (c) “Necklace-like” nanofibers composed of square particles are obtained after charged; (d) “Holbrick-like” particles are obtained after cross-linking[61]
1 | JACOB N I. Intermolecular and surface forces[M]. Amsterdam: Elsevier, 2011. |
2 | MAI Y, EISENBERG A. Self-assembly of block copolymers[J]. Chem Soc Rev, 2012, 41(18): 5969. |
3 | TOY R, PEIRIS P M, GHAGHADA K B, et al. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles[J]. Nanomedicine, 2014, 9(1): 121-134. |
4 | GENG Y, DALHAIMER P, CAI S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery[J]. Nat Nanotechnol, 2007, 2(4): 249-255. |
5 | LI X, IOCOZZIA J, CHEN Y, et al. From precision synthesis of block copolymers to properties and applications of nanoparticles[J]. Angew Chem Int Ed, 2018, 57(8): 2046-2070. |
6 | ALBIGÈS R, KLEIN P, ROI S, et al. Water-based acrylic coatings reinforced by PISA-derived fibers[J]. Polym Chem, 2017, 8(34): 4992-4995. |
7 | ZHANG L, EISENBERG A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers[J]. Science, 1995, 268(5218): 1728-1731. |
8 | MAI Y, EISENBERG A. Self-assembly of block copolymers[J]. Chem Soc Rev, 2012, 41(18): 5969. |
9 | ZHANG L, EISENBERG A. Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. J Am Chem Soc, 1996, 118(13): 3168-3181. |
10 | CAMERON N S, CORBIERRE M K, EISENBERG A. Asymmetric amphiphilic block copolymers in solution: a morphological wonderland[J]. Canadian J Chem, 1999, 77(8): 1311-1326. |
11 | ZHANG L F, EISENBERG A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polym Adv Technol, 1998, 9(10/11): 677-699. |
12 | KIM H, KANG B, CHOI J, et al. Morphological behavior of A2B block copolymers in thin films[J]. Macromolecules, 2018, 51(3): 1181-1188. |
13 | HOEBEN F J M, JONKHEIJM P, MEIJER E W, et al. About supramolecular assemblies of π-conjugated systems[J]. Chem Rev, 2005, 105(4): 1491-1546. |
14 | WARREN N J, ARMES S P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization[J]. J Am Chem Soc, 2014, 136(29): 10174-10185. |
15 | CANNING S L, SMITH G N, ARMES S P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly[J]. Macromolecules, 2016, 49(6): 1985-2001. |
16 | CHEN S, SHI P, ZHANG W. In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition[J]. Chinese J Polym Sci, 2017, 35(4): 455-479. |
17 | DERRY M J, FIELDING L A, ARMES S P. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization[J]. Prog Polym Sci, 2016, 52: 1-18. |
18 | MELLOT G, BEAUNIER P, GUIGNER J, et al. Beyond simple AB diblock copolymers: application of bifunctional and trifunctional RAFT agents to PISA in water[J]. Macromol Rapid Commun, 2019, 40(2): 1800315. |
19 | ZHANG L, EISENBERG A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution[J]. Macromolecules, 1999, 32(7): 2239-2249. |
20 | ZHANG L, EISENBERG A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions[J]. Macromolecules, 1996, 29(27): 8805-8815. |
21 | MAI Y, ZHOU Y, YAN D. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether[J]. Macromolecules, 2005, 38(21): 8679-8686. |
22 | HONG H, MAI Y, ZHOU Y, et al. Self-assembly of large multimolecular micelles from hyperbranched star copolymers[J]. Macromol Rapid Commun, 2007, 28(5): 591-596. |
23 | D'AGOSTO F, RIEGER J, LANSALOT M. RAFT-mediated polymerization-induced self-assembly[J]. Angew Chem Int Ed, 2020, 59(22): 8368-8392. |
24 | MELLOT G, GUIGNER J, JESTIN J, et al. Bisurea-functionalized RAFT agent: a straightforward and versatile tool toward the preparation of supramolecular cylindrical nanostructures in water[J]. Macromolecules, 2018, 51(24): 10214-10222. |
25 | MELLOT G, GUIGNER J M, BOUTEILLER L, et al. Templated PISA: driving polymerization-induced self-assembly towards fibre morphology[J]. Angew Chem Int Ed, 2019, 58(10): 3173-3177. |
26 | GUERRE M, SEMSARILAR M, GODIARD F, et al. Polymerization-induced self-assembly of PVAc-b-PVDF block copolymers via RAFT dispersion polymerization of vinylidene fluoride in dimethyl carbonate[J]. Polym Chem, 2017, 8(9): 1477-1487. |
27 | TRITSCHLER U, PEARCE S, GWYTHER J, et al. 50th anniversary perspective: functional nanoparticles from the solution self-assembly of block copolymers[J]. Macromolecules, 2017, 50(9): 3439-3463. |
28 | BOISSÉ S, RIEGER J, DI-CICCO A, et al. Synthesis via RAFT of amphiphilic block copolymers with liquid-crystalline hydrophobic block and their self-assembly in water[J]. Macromolecules, 2009, 42(22): 8688-8696. |
29 | 周其凤, 王新久. 液晶高分子[M]. 北京: 科学出版社, 1994. |
ZHOU Q F, WANG X J. Liquid crystal polymers[M]. Beijing: Science Press, 1994. | |
30 | PIÑOL R, JIA L, GUBELLINI F, et al. Self-assembly of PEG-b-liquid crystal polymer: the role of smectic order in the formation of nanofibers[J]. Macromolecules, 2007, 40(16): 5625-5627. |
31 | JIA L, CAO A, LÉVY D, et al. Smectic polymer vesicles[J]. Soft Matter, 2009, 5(18): 3446. |
32 | XING X, SHIN H, BOWICK M J, et al. Morphology of nematic and smectic vesicles[J]. Proc Natl Acad Sci, 2012, 109(14): 5202-5206. |
33 | LI X, JIN B, GAO Y, et al. Monodisperse cylindrical micelles of controlled length with a liquid-crystalline perfluorinated core by 1D “self-seeding”[J]. Angew Chem Int Ed, 2016, 55(38): 11392-11396. |
34 | JIN B, SANO K, AYA S, et al. One-pot universal initiation-growth methods from a liquid crystalline block copolymer[J]. Nat Commun, 2019, 10(1): 2397. |
35 | TONG X, WANG G, SOLDERA A, et al. How can azobenzene block copolymer vesicles be dissociated and reformed by light?[J]. J Phys Chem B, 2005, 109(43): 20281-20287. |
36 | HAN D, TONG X, ZHAO Y, et al. Block copolymers comprising π-conjugated and liquid crystalline subunits: induction of macroscopic nanodomain orientation[J]. Angew Chem Int Ed, 2010, 49(48): 9162-9165. |
37 | ZHAO Y, TREMBLAY L, ZHAO Y. Doubly photoresponsive and water-soluble block copolymers: synthesis and thermosensitivity[J]. J Polym Sci, Part A: Polym Chem, 2010, 48(18): 4055-4066. |
38 | FU S, ZHANG H, ZHAO Y. Optically and thermally activated shape memory supramolecular liquid crystalline polymers[J]. J Mater Chem C, 2016, 4(22): 4946-4953. |
39 | FAN W, TONG X, LI G, et al. Photoresponsive liquid crystalline polymer single-chain nanoparticles[J]. Polym Chem, 2017, 8(22): 3523-3529. |
40 | QU T, ZHAO Y, LI Z, et al. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers[J]. Nanoscale, 2016, 8(6): 3268-3273. |
41 | ZHENG X, LI Z, ZHAO Y, et al. Polydimethylsiloxane-assisted alignment transition from perpendicular to parallel of cylindrical microdomains in block copolymer films[J]. RSC Adv, 2016, 6(96): 93298-93302. |
42 | WANG P, CAO S, ZHAO Y, et al. Spherical compound micelles with lamellar stripes self-assembled from star liquid crystalline diblock copolymers in solution[J]. Macromol Chem Phys, 2017, 218(19): 1700148. |
43 | WEN W, HUANG T, GUAN S, et al. Self-assembly of single chain janus nanoparticles with tunable liquid crystalline properties from stilbene-containing block copolymers[J]. Macromolecules, 2019, 52(8): 2956-2964. |
44 | ZHOU Q F, LI H M, FENG X D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens[J]. Macromolecules, 1987, 20(1): 233-234. |
45 | CAI H, JIANG G, CHEN C, et al. New Morphologies and phase transitions of rod-coil dendritic-linear block copolymers depending on dendron generation and preparation procedure[J]. Macromolecules, 2014, 47(1): 146-151. |
46 | LYU X, XIAO A, ZHANG W, et al. Head-tail asymmetry as the determining factor in the formation of polymer cubosomes or hexasomes in a rod-coil amphiphilic block copolymer[J]. Angew Chem Int Ed, 2018, 57(32): 10132-10136. |
47 | HOU X, GUAN S, QU T, et al. Light-triggered reversible self-engulfing of Janus nanoparticles[J]. ACS Macro Lett, 2018, 7(12): 1475-1479. |
48 | 刘世勇. 大分子自组装新编[M]. 北京: 科学出版社, 2018. |
LIU S Y. Emerging trends in macromolecular self-assembly[M]. Beijing: Science Press, 2018. | |
49 | AN Z, SHI Q, TANG W, et al. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels[J]. J Am Chem Soc, 2007, 129(46): 14493-14499. |
50 | ZHANG W, HONG C, PAN C. Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery[J]. Macromol Rapid Commun, 2019, 40(2): 1800279. |
51 | LOWE A B. RAFT alcoholic dispersion polymerization with polymerization-induced self-assembly[J]. Polymer, 2016, 106: 161-181. |
52 | ZHANG X, BOISSÉ S, BUI C, et al. Amphiphilic liquid-crystal block copolymer nanofibers via RAFT-mediated dispersion polymerization[J]. Soft Matter, 2012, 8(4): 1130-1141. |
53 | HUO M, ZHANG Y, ZENG M, et al. Morphology evolution of polymeric assemblies regulated with fluoro-containing mesogen in polymerization-induced self-assembly[J]. Macromolecules, 2017, 50(20): 8192- 8201. |
54 | HUO M, LI D, SONG G, et al. Semi-fluorinated methacrylates: a class of versatile monomers for polymerization-induced self-assembly[J]. Macromol Rapid Commun, 2018, 39(7): 1700840. |
55 | HUO M, SONG G, ZHANG J, et al. Nonspherical liquid crystalline assemblies with programmable shape transformation[J]. ACS Macro Lett, 2018, 7(8): 956-961. |
56 | SHEN L, GUO H, ZHENG J, et al. RAFT polymerization-induced self-assembly as a strategy for versatile synthesis of semifluorinated liquid-crystalline block copolymer nanoobjects[J]. ACS Macro Lett, 2018, 7(3): 287-292. |
57 | GUAN S, ZHANG C, WEN W, et al. Formation of anisotropic liquid crystalline nanoparticles via polymerization-induced hierarchical self-assembly[J]. ACS Macro Lett, 2018, 7(3): 358-363. |
58 | GUAN S, WEN W, YANG Z, et al. Liquid crystalline nanowires by polymerization induced hierarchical self-assembly[J]. Macromolecules, 2019, 53(1): 465-472. |
59 | GUAN S, CHEN A. Influence of spacer lengths on the morphology of biphenyl-containing liquid crystalline block copolymer nanoparticles via polymerization-induced self-assembly[J]. Macromolecules, 2020, 53(15): 6235-6245. |
60 | ASAOKA S, UEKUSA T, TOKIMORI H, et al. Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films[J]. Macromolecules, 2011, 44(19): 7645-7658. |
61 | WEN W, CHEN A. Influence of single chain nanoparticle stabilizers on polymerization induced hierarchical self-assembly[J]. Polym Chem, 2021, 12(18): 2743-2751. |
[1] | 杨林涛, 李茂. 烷基取代聚对苯二甲酰对苯二胺的相对分子质量以及相对分子质量分布分析[J]. 应用化学, 2023, 40(6): 853-859. |
[2] | 周嘉成, 王冬冬, 高云宝, 金晶, 姜伟. 基于聚二氧化碳树脂压敏胶的流变及粘结性能[J]. 应用化学, 2023, 40(6): 871-878. |
[3] | 范鹏辉, 刘杰, 娄生辉, 唐涛. 环氧树脂中磷系阻燃剂协效体系的研究进展[J]. 应用化学, 2023, 40(5): 653-665. |
[4] | 杨林, 潘卉, 郜定峰, 王晓冬. 芳纶改性聚合物基纳米复合皮革涂饰剂的制备和性能[J]. 应用化学, 2023, 40(5): 708-719. |
[5] | 陶雨晨, 候晓慧, 尹登科, 杨晔. 基于电场调控的胆固醇基液晶薄膜对成纤维细胞生长分化的影响[J]. 应用化学, 2023, 40(4): 546-553. |
[6] | 林楠煜, 高峰, 曲江英, 涂晶晶, 钟伟军, 臧云浩. 超亲水/水下疏油高硅布的制备及其油水分离性能[J]. 应用化学, 2023, 40(3): 449-459. |
[7] | 石碧茹, 武浩浩, 谢昊圃, 田新欣, 孙莹潞, 刘向东, 杨宇明. Diels-Alder型自修复聚氨酯胶粘剂的制备及其性能[J]. 应用化学, 2023, 40(2): 277-287. |
[8] | 吕永鹏, 王玉阁, 谷倩倩, 张之材, 肖建数, 尹园, 孙洪国, 郑雅芳, 孙昭艳. 炭黑在异戊橡胶中的分散及其对动静态性能的影响[J]. 应用化学, 2022, 39(12): 1842-1853. |
[9] | 马轶莲, 胡浩东, 丁营利, 陈相见, 崔亮, 张坤玉. 羟基功能化离聚物与含环氧基团增容剂协同改性聚乳酸[J]. 应用化学, 2022, 39(12): 1870-1879. |
[10] | 冷冰冰, 朱春卉, 石埕荧, 王志鹏, 刘洋, 张宏岩, 许文革, 刘佰军. 含环三磷腈衍生物的辐照交联聚乙烯基复合材料的制备及阻燃性能[J]. 应用化学, 2022, 39(11): 1672-1679. |
[11] | 王绪凯, 杨佳臻, 丁建勋. 双网络增强手性超分子水凝胶促进成骨[J]. 应用化学, 2022, 39(10): 1627-1628. |
[12] | 丁小健, 曹从军, 侯成敏, 马含笑, 胡娇, 任梦洁, 杨国勇. 用于油/水分离的环保无氟超疏水织物的制备与性能[J]. 应用化学, 2022, 39(9): 1391-1400. |
[13] | 张丹, 刘芳, 杨雪, 许东华, 石彤非. 热塑性聚氨酯共混物的硬度与冲击性能的关系[J]. 应用化学, 2022, 39(8): 1216-1223. |
[14] | 郭晓峰, 李佳林, 王宇博, 金君素. 含硫高折射率光学树脂合成及性能研究进展[J]. 应用化学, 2022, 39(5): 723-735. |
[15] | 唐静, 张娜, 史冬旭, 张芳慧, 唐健杰. UiO-66-NH2接枝吡啶亚胺钴系催化剂的合成及催化乙烯齐聚性能[J]. 应用化学, 2022, 39(02): 258-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||