应用化学 ›› 2021, Vol. 38 ›› Issue (10): 1299-1309.DOI: 10.19894/j.issn.1000-0518.210316
收稿日期:
2021-06-28
接受日期:
2021-08-12
出版日期:
2021-10-01
发布日期:
2021-10-15
通讯作者:
吉岩,危岩
基金资助:
Shuai ZHANG1, Yang YANG2, Yan JI1(), Yen WEI1()
Received:
2021-06-28
Accepted:
2021-08-12
Published:
2021-10-01
Online:
2021-10-15
Contact:
Yan JI,Yen WEI
About author:
jiyan@mail.tsinghua.edu.cn; weiyen@tsinghua.edu.cn;Supported by:
摘要:
液晶弹性体(LCEs)是一种可响应外界刺激、并产生可逆驱动的智能高分子材料。在LCEs基体中添加各种功能性材料,所得的复合材料能对光、电和磁场等外界刺激做出响应,极大地扩展了LCEs材料的应用领域。磁场刺激由于具有远程非接触调控、响应速度快、生物安全性高和穿透力强等特点,逐渐引起研究者的兴趣。本文介绍了磁响应LCEs复合材料的研究现状,同时探讨了磁响应LCEs复合材料在相关领域的应用前景。
中图分类号:
张帅, 杨洋, 吉岩, 危岩. 磁响应液晶弹性体材料研究进展[J]. 应用化学, 2021, 38(10): 1299-1309.
Shuai ZHANG, Yang YANG, Yan JI, Yen WEI. Research Process on Magneto⁃responsive Liquid Crystalline Elastomers[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1299-1309.
图2 不同磁含量液晶弹性体复合材料培养细胞的共聚焦显微镜图像和细胞存活性示意图[41]A. Fe3O4质量分数为0.2 %的磁响应液晶弹性体的共聚焦图像(a—c);Fe3O4质量分数为0.5 %的磁响应液晶弹性体的共聚焦图像(d—f);B. NIH3T3成纤维细胞在胶原涂液晶弹性体上生长的存活率
Fig.2 Confocal images of the magneto-responsive LCEs with different Fe3O4 particle contents and viability ratio of NIH3T3 fibroblasts growing on collagen coated LCEs[41]A. Confocal images of the magneto-responsive LCEs with mass percent 0.2 % particle content (a—c); Confocal images of the magneto-responsive LCEs with mass percent 0.5 % particle content (d—f); B. Viability ratio of NIH3T3 fibroblasts growing on collagen coated LCEs
图3 磁响应液晶弹性体颗粒发生磁控运动[56]A.光、磁双响应的液晶弹性体粒子的磁响应类圆运动和70 ℃下12.6%的可逆光响应光驱动;B.热、磁双响应的液晶弹性体粒子运输塑料块体
Fig.3 Magnetic movement of magneto-responsive LCE particles[56]A.Circle-like movement of a photoresponsive magneto-responsive LCE particle and reversible photoresponsive photoactuation of 12.6% at 70 ℃. B.Circle-like transportation of a piece of plastic of a thermoresponsive magneto-responsive LCE particle
图4 能够适应变化环境的磁响应液晶弹性体复合材料[58]A.不系绳原位可重构的微型软体机器,通过不同的运动模式来适应不同的环境/地形;B.模仿藤蔓植物运动和可重构的磁弹簧
Fig. 4 Magneto-responsive LCEs hat can self-adapt to a changing environment[58]A.An untethered in situ reconfgurable soft miniature machine that self-adapts to different environments/terrains by exhibiting distinct locomotion modes; B.Experimental demonstrations of a vine-plant-inspired flament and a reconfgurable magnetic spring
图5 化学基团修饰磁性纳米颗粒键合到液晶弹性体中[63-64,66]A.液晶附加铁氧体复合材料的示意图;B.准球形油酸包覆铁氧体纳米粒子;C.磁性液晶弹性体的合成和最终结构的示意图
Fig. 5 Magnetic nanoparticles modified by chemical groups are bonded to LCEs[63-64,66]A.Schematic representation of the LC-attached ferrite composite; B.Quasi-spherical oleate-coated ferrite nanoparticles; C.Depiction of magnetic LCEs synthesis and fnal structure
图6 磁响应调控不同运动形式[69-70]A.货物的拾取,运输,旋转和释放的不系绳旋转软体机器人抓手示意图;B.双层膜材料对外界温度变化和磁场响应的复杂双响应变形行为(温度和磁场刺激分别应用和同时应用)
Fig. 6 Magnetic response is employed to conduct the different locomotions[69-70]A.Schematic illustration of the cargo pick up, transport, rotation, and release of the untethered rotational soft robotic gripper. B.Complex dual-responsive shape-morphing behaviors of the bimorph material in response to the external temperature change and magnetic field, applied separated and concurrently
1 | OHM C, BREHMER M, ZENTEL R. Liquid crystalline elastomers as actuators and sensors[J]. Adv Mater, 2010, 22(31): 3366-3387. |
2 | JIANG H R, LI C S, HUANG X Z. Actuators based on liquid crystalline elastomer materials[J]. Nanoscale, 2013, 5: 5225-5240. |
3 | LU H F, WANG M, CHEN X M, et al. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property[J]. J Am Chem Soc, 2019, 141(36): 14364-14369. |
4 | WARE T H, MCCONNEY M E, WIE J J, et al. Voxelated liquid crystal elastomers[J]. Science, 2015, 347(6225): 982-984. |
5 | WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nat Mater, 2015, 14: 1087-1098. |
6 | BARNES M, VERDUZCO R. Direct shape programming of liquid crystal elastomers[J]. Soft Matter, 2019, 15: 870-879. |
7 | LEE J, GUO Y, CHOI Y J, et al. Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking[J]. Soft Matter, 2020, 16: 2695-2705. |
8 | PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds[J]. Nat Mater, 2014, 13: 36-41. |
9 | TAJBAKHSH A, TERENTJEV E. Spontaneous thermal expansion of nematic elastomers[J]. Eur Phys J E, 2001, 6: 181-188. |
10 | KüUPFER J, FINKELMANN H. Liquid crystal elastomers: influence of the orientational distribution of the crosslinks on the phase behaviour and reorientation processes[J]. Macromol Chem Phys, 1994, 195: 1353-1367. |
11 | OOSTEN C LVAN, BASTIAANSEN C W, BROER D J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light[J]. Nat Mater, 2009, 8: 677-682. |
12 | YANG H, BUGUIN A, J-MTAULEMESSE, et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions[J]. J Am Chem Soc, 2009, 131(41): 15000-15004. |
13 | OHM C, SERRA C, ZENTEL R. A continuous flow synthesis of micrometer‐sized actuators from liquid crystalline elastomers[J]. Adv Mater, 2009, 21(47): 4859-4862. |
14 | PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators[J]. Adv Mater, 2019, 31(52): 1904224. |
15 | HE Q G, WANG Z J, WANG Y, et al. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation[J]. Sci Adv, 2019, 5(10): 7. |
16 | XIAO Y Y, JIANG Z C, TONG X, et al. Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer[J]. Adv Mater, 2019, 31(36): 9. |
17 | WINKLER M, KAISER A, KRAUSE S, et al. Liquid crystal elastomers with magnetic actuation[J]. Macromol Symp, 2010, 291-292: 186-192. |
18 | JI Y, MARSHALL J E, TERENTJEV E M. Nanoparticle-liquid crystalline elastomer composites[J]. Polymers, 2012, 4(1): 316-340. |
19 | KIM Y, YUK H, ZHAO R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558: 274-279. |
20 | ZHANG J, DILLER E. Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet[J]. Soft Robot, 2018, 5: 761-776. |
21 | DILLER E, MIYASHITA S, SITTI M. Remotely addressable magnetic composite micropumps[J]. RSC Adv, 2012, 2: 3850-3856. |
22 | REN Z, HU W, DONG X, et al. Multi-functional soft-bodied jellyfish-like swimming[J]. Nat Commun, 2019, 10: 1-12. |
23 | PACCHIEROTTI C, ONGARO F,VAN DEN BRINK F, et al. Steering and control of miniaturized untethered soft magnetic grippers with haptic assistance[J]. IEEE T Autom Sci Eng, 2017, 15: 290-306. |
24 | 高晓松, 邱广明, 孙宗华, 等. Fe3O4/P(St-AA)核-壳复合微球的制备和表征[J]. 应用化学, 1996, 14(1): 6-9. |
GAO X S, QIU G M, SUN Z H, et al. Preparation and characterization of Fe3O4/P(St-AA) core-shell composite microspheres[J]. Chinese J Appl Chem, 1996, 14(1): 6-9. | |
25 | HU K, SUN J, GUO Z, et al. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field[J]. Adv Mater, 2015, 27: 2507-2514. |
26 | MOHR R, KRATZ K, WEIGEL T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proc Natl Acad Sci USA, 2006, 103: 3540-3545. |
27 | TANG J, TONG Z, XIA Y, et al. Super tough magnetic hydrogels for remotely triggered shape morphing[J]. J Mater Chem B, 2018, 6: 2713-2722. |
28 | TANG J, YIN Q, QIAO Y, et al. Shape morphing of hydrogels in alternating magnetic field[J]. ACS Appl Mater Interfaces, 2019, 11: 21194-21200. |
29 | RAZZAQ M Y, BEHL M, LENDLEIN A. Memory-effects of magnetic nanocomposites[J]. Nanoscale, 2012, 4: 6181-6195. |
30 | SCHMIDT A M. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles[J]. Macromol Rapid Commun, 2006, 27: 1168-1172. |
31 | ZHANG S, ZHANG Y, WU Y, et al. A magnetic solder for assembling bulk covalent adaptable network blocks[J]. Chem Sci, 2020, 11: 7694-7700. |
32 | KAISER A, WINKLER M, KRAUSE S, et al. Magnetoactive liquid crystal elastomer nanocomposites[J]. J Mater Chem, 2009, 19: 538-543. |
33 | MASSART R, CABUIL V. Effect of some parameters on the formation of colloidal magnetite in alkaline-medium-yield and particle-size control[J]. J Chim Phys PCB, 1987, 84: 967-973. |
34 | KÜPFER J, FINKELMANN H. Nematic liquid single crystal elastomers[J]. Chem Rapid Commun, 1991, 12: 717-726. |
35 | DAVIS K A, BURKE K A, MATHER P T, et al. Dynamic cell behavior on shape memory polymer substrates[J]. Biomaterials, 2011, 32: 2285-2293. |
36 | BERA T, FREEMAN E J, MCDONOUGH J A, et al. Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts[J]. ACS Appl Mater Interfaces, 2015, 7: 14528-14535. |
37 | YANG P, BAKER R M, HENDERSON J H, et al. In vitro wrinkle formation via shape memory dynamically aligns adherent cells[J]. Soft Matter, 2013, 9: 4705-4714. |
38 | GOPALAN S M, FLAIM C, BHATIA S N, et al. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers[J]. Biotechnol Bioeng, 2003, 81: 578-587. |
39 | WESTCOTT N P, LUO W, GOLDSTEIN J, et al. Dynamic 3D cell culture via a chemoselective photoactuated ligand[J]. Biointerphases, 2014, 9: 031005. |
40 | MAYER M, RABINDRANATH R, BOERNER J, et al. Ultra-soft pdms-based magnetoactive elastomers as dynamic cell culture substrata[J]. Plos One, 2013, 8: No.e76196. |
41 | HERRERA-POSADA S, MORA-NAVARRO C, ORTIZ-BERMUDEZ P, et al. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates[J]. Mater Sci Eng: C, 2016, 65: 369-378. |
42 | DRURY J L, MOONEY D J. Hydrogels for tissue engineering: scaffold design variables and applications[J]. Biomaterials, 2003, 24: 4337-4351. |
43 | RANDALL C L, GULTEPE E, GRACIAS D H. Self-folding devices and materials for biomedical applications[J]. Trends Biotechnol, 2012, 30: 138-146. |
44 | MA M, GUO L, ANDERSON D G, et al. Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science, 2013, 339: 186-189. |
45 | RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521: 467-475. |
46 | KUENSTLER A S, CHEN Y, BUI P, et al. Blueprinting photothermal shape-morphing of liquid crystal elastomers[J]. Adv Mater, 2020, 32: 2000609. |
47 | LIU L, LIU M H, DENG L L, et al. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property[J]. J Am Chem Soc, 2017, 139(33): 11333-11336. |
48 | WANG M, LIN B P, YANG H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes[J]. Nat Commun, 2016, 7: 1-8. |
49 | YANG Y, PEI Z, LI Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold[J]. J Am Chem Soc, 2016, 138: 2118-2121. |
50 | WANG Y, DANG A, ZHANG Z, et al. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers[J]. Adv Mater, 2020, 32: 2004270. |
51 | LIU J A C, GILLEN J H, MISHRA S R, et al. Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics[J]. Sci Adv, 2019, 5: eaaw2897. |
52 | ZHANG D, ZHANG J, JIAN Y, et al. Multi-field synergy manipulating soft polymeric hydrogel transformers[J]. Adv Intell Syst, 2021, 3: 2000208. |
53 | LI C, LAU G C, YUAN H, et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields[J]. Sci Robot, 2020, 5: eabb9822. |
54 | KLÖCKNER B, DANIEL P, BREHMER M, et al. Liquid crystalline phases from polymer functionalized ferri-magnetic Fe3O4 nanorods[J]. J Mater Chem C, 2017, 5: 6688-6696. |
55 | 董川, 焦媛, 刘付永, 等. 磁性纳米复合物的制备及对铜离子(Ⅱ)的传感检测[J]. 应用化学, 2017, 34(1): 111-117. |
DONG C, JIAO Y, LIU F Y, et al. Synthesis of magnetic nanocomposites and sensitive detection for copper(Ⅱ)[J]. Chinese J Appl Chem, 2017, 34(1): 111-117. | |
56 | DITTER D, BLÜMLER P, KLÖCKNER B, et al. Microfluidic synthesis of liquid crystalline elastomer particle transport systems which can be remote-controlled magnetically[J]. Adv Funct Mater, 2019, 29: 1902454. |
57 | BAUN O, BLÜMLER P. Permanent magnet system to guide superparamagnetic particles[J]. J Magn Magn Mater, 2017, 439: 294-304. |
58 | ZHANG J, GUO Y, HU W, et al. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines[J]. Adv Mater, 2021, 33: 2006191. |
59 | XU C, XU K, GU H, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles[J]. J Am Chem Soc, 2004, 126(32): 9938-9939. |
60 | NAM J M, THAXTON C S, MIRKIN C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins[J]. Science, 2003, 301: 1884-1886. |
61 | GILLAIZEAU-GAUTHIER I, ODOBEL F, ALEBBI M, et al. Phosphonate-based bipyridine dyes for stable photovoltaic devices[J]. Inorg Chem, 2001, 40: 6073-6079. |
62 | CHEN L X, LIU T, THURNAUER M C, et al. Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations[J]. J Phys Chem B, 2002, 106: 8539-8546. |
63 | SONG H M, KIM J C, HONG J H, et al. Magnetic and transparent composites by linking liquid crystals to ferrite nanoparticles through covalent networks[J]. Adv Funct Mater, 2007, 17: 2070-2076. |
64 | GARCIA-MARQUEZ A, DEMORTIERE A, HEINRICH B, et al. Iron oxide nanoparticle-containing main-chain liquid crystalline elastomer: towards soft magnetoactive networks[J]. J Mater Chem, 2011, 21: 8994- 8996. |
65 | HABERL J M, SÁNCHEZ‐FERRER A, MIHUT A M, et al. Liquid‐crystalline elastomer‐nanoparticle hybrids with reversible switch of magnetic memory[J]. Adv Mater, 2013, 25: 1787-1791. |
66 | CMOK L, VILFAN M, GYERGYEK S, et al. Magnetic polydomain liquid crystal elastomers-synthesis and characterisation[J]. Liq Cryst, 2021, DOI: 10.1080/02678292.2021.1901149. |
67 | AGRAWAL A, YUN T, PESEK S L, et al. Shape-responsive liquid crystal elastomer bilayers[J]. Soft Matter, 2014, 10: 1411-1415. |
68 | YUAN C, DING Z, WANG T, et al. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates[J]. Smart Mater Struct, 2017, 26: 105027. |
69 | DA CUNHA M P, FOELEN Y, VAN RAAK R J H, et al. An untethered magnetic- and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuators[J]. Adv Opt Mater, 2019, 7: 1801643. |
70 | ZHANG J, GUO Y, HU W, et al. Wirelessly actuated thermo‐ and magneto‐responsive soft bimorph materials with programmable shape‐morphing[J]. Adv Mater, 2021, 33: 2100336. |
[1] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[2] | 曹从军, 马含笑, 侯成敏, 丁小健, 管飙. 乙基纤维素磁性复合材料对溶液中铜离子的吸附性能[J]. 应用化学, 2022, 39(6): 969-979. |
[3] | 张晨晨, 刘昱含, 赵文杰, 刘佰军, 孙昭艳, 刘万利, 王艳淼, 呼微. 氧化有机溶剂木质素基亲水性上浆剂的制备及其在聚丙烯中的应用[J]. 应用化学, 2022, 39(12): 1854-1861. |
[4] | 周玉凤, 周川巍, 胡桐泽, 段展鹏, 王颢潼, 石淑云. Fe/V-Sb2O3复合材料的构筑及光催化降解医药废水[J]. 应用化学, 2022, 39(10): 1572-1578. |
[5] | 史和昌, 于彦存, 韩常玉. 聚乙烯/氧化铝复合材料形态、流变和力学性能[J]. 应用化学, 2022, 39(10): 1593-1599. |
[6] | 李祎, 程宏达, 于彦存, 韩常玉, 陈广建, 祝英男. 高密度聚乙烯复合导热材料性能[J]. 应用化学, 2021, 38(8): 954-960. |
[7] | 程广增, 刘帅, 王焕磊. 钾离子电池负极的高性能潜在材料:锑[J]. 应用化学, 2021, 38(2): 170-180. |
[8] | 赵云萧, 王光鑫, 陈友绪, 赵桂艳. 聚合物/淀粉复合材料的制备与性能研究进展[J]. 应用化学, 2021, 38(11): 1432-1440. |
[9] | 邹呈, 高延子, 于美娜, 肖久梅, 张兰英, 杨槐. 液晶/高分子复合材料及其在反式电控调光膜中的应用研究进展[J]. 应用化学, 2021, 38(10): 1213-1225. |
[10] | 王丹, 彭海炎, 周兴平, 解孝林. 全息高分子/液晶复合材料的研究进展[J]. 应用化学, 2021, 38(10): 1268-1298. |
[11] | 顾军渭, 程蓓, 杨旭彤. 液晶功能化氮化硼/液晶环氧树脂导热复合材料的制备[J]. 应用化学, 2021, 38(10): 1382-1388. |
[12] | 翟飞, 封伟. 4D打印液晶弹性体软体机器人及其热致运动行为[J]. 应用化学, 2021, 38(10): 1389-1396. |
[13] | 胡文婷, 左波, 聂振洲, 王猛, 杨洪. 光驱动液晶弹性体扭曲环带软致动器的有限元分析[J]. 应用化学, 2021, 38(10): 1397-1404. |
[14] | 邢雅艳, 史宇哲, 邓世贤, 赵柏涵, 刘志国. 儿茶素-银纳米复合材料的制备及其应用[J]. 应用化学, 2020, 37(9): 1062-1068. |
[15] | 高丽敏, 李璐, 周光远, 王红华, 朱忠丽. 硅土/酚酞聚芳醚砜复合材料的制备及性能[J]. 应用化学, 2020, 37(5): 524-530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||