应用化学 ›› 2021, Vol. 38 ›› Issue (10): 1310-1325.DOI: 10.19894/j.issn.1000-0518.210382
收稿日期:
2021-07-30
接受日期:
2021-09-08
出版日期:
2021-10-01
发布日期:
2021-10-15
通讯作者:
王立权,林嘉平
基金资助:
Wei HONG, Li-Quan WANG(), Jia-Ping LIN()
Received:
2021-07-30
Accepted:
2021-09-08
Published:
2021-10-01
Online:
2021-10-15
Contact:
Li-Quan WANG,Jia-Ping LIN
About author:
jlin@ecust.edu.cn; lq_wang@ecust.edu.cn;Supported by:
摘要:
高分子通过适当的分子结构设计,可自组装形成种类丰富的多级微相结构,表现比普通的单周期结构更优异的力学和光学等性能。 理解和掌握高分子多级微相结构的形成机理是设计新颖多级结构材料的基础,同时揭示多级结构与性能的关系可为制备具有优异性能的多功能材料提供指导。 从以上两个方面出发,结合理论模拟手段,详细阐述了各种高分子多级微相结构,特别是含液晶单元的多级结构的形成过程及机理,进而简述了高分子多级结构的性能,如力学性能和光电性能。 最后,总结分析了高分子多级微相结构的研究进展,并展望了主要研究方向。
中图分类号:
洪卫, 王立权, 林嘉平. 高分子多级微相结构与性能的研究进展[J]. 应用化学, 2021, 38(10): 1310-1325.
Wei HONG, Li-Quan WANG, Jia-Ping LIN. Research Progress of Polymeric Hierarchical Microstructures and Their Properties[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1310-1325.
图 Fig. | 研究方法 Method | 分子结构 Molecular structure | 简介 Brief introduction |
---|---|---|---|
1 | 实验合成 Experimental synthesis | P(IS)4IP和PI(SI)2 | 两种分子构型多嵌段共聚物本体在不同嵌段体积分数下的自组装行为 Self?assembly behaviors of multiblock copolymers with two molecular configurations under different volume fractions of blocks |
2 | 理论和耗散粒子动力学 Theory and dissipative particle dynamics | C(BA)mBC | 多嵌段共聚物本体自组装行为 Self?assembly behaviors of multiblock copolymers |
3 | 自洽场理论 Self?consistent field theory | A(BC)n | 多嵌段共聚物本体在不同的相互作用参数及嵌段体积分数下的自组装行为 Self?assembly behaviors of multiblock copolymer under different interaction parameters and volume fractions of blocks |
4 | 耗散粒子动力学 Dissipative particle dynamics | A(BC)3 | 多嵌段共聚物本体在薄膜受限下随着薄膜厚度的变化能自组装形成不同的形貌 Multiblock copolymers can self?assemble into different morphologies with the change of film thickness |
5 | 自洽场/密度泛函理论 Self?consistent field/density functional theory | A(BA)5/纳米粒子混合物 A(BA)5/Nanoparticle mixture | 多嵌段共聚物与纳米粒子共混物的自组装行为 Self?assembly behaviors of multiblock copolymer and nanoparticle mixture |
6 | 自洽场理论 Self?consistent field theory | 线性-梳状嵌段共聚物Comb?coil block copolymer | 线性-梳状嵌段共聚物本体的自组装行为 Self?assembly behaviors of comb?coil block copolymers |
7 | 自洽场/密度泛函理论 Self?consistent field/density functional theory | 聚合物接枝纳米粒子 Polymer tethered nanoparticles | 线性嵌段共聚物与纳米粒子共价连接的体系自组装行为 Self?assembly behaviors of linear block copolymer tethered nanoparticles |
8 | 自洽场理论 Self?consistent field theory | Cx(RC)nRy刚柔共聚物 Cx(RC)nRy Rod?coil copolymer | 刚柔多嵌段共聚物本体能自组装形成多级液晶微相结构 Rod?coil multiblock copolymers can self?assemble into hierarchical smectic structures |
表1 几种高分子体系的自组装行为简介
Table 1 Brief introduction to self?assembly behaviors of several polymer systems
图 Fig. | 研究方法 Method | 分子结构 Molecular structure | 简介 Brief introduction |
---|---|---|---|
1 | 实验合成 Experimental synthesis | P(IS)4IP和PI(SI)2 | 两种分子构型多嵌段共聚物本体在不同嵌段体积分数下的自组装行为 Self?assembly behaviors of multiblock copolymers with two molecular configurations under different volume fractions of blocks |
2 | 理论和耗散粒子动力学 Theory and dissipative particle dynamics | C(BA)mBC | 多嵌段共聚物本体自组装行为 Self?assembly behaviors of multiblock copolymers |
3 | 自洽场理论 Self?consistent field theory | A(BC)n | 多嵌段共聚物本体在不同的相互作用参数及嵌段体积分数下的自组装行为 Self?assembly behaviors of multiblock copolymer under different interaction parameters and volume fractions of blocks |
4 | 耗散粒子动力学 Dissipative particle dynamics | A(BC)3 | 多嵌段共聚物本体在薄膜受限下随着薄膜厚度的变化能自组装形成不同的形貌 Multiblock copolymers can self?assemble into different morphologies with the change of film thickness |
5 | 自洽场/密度泛函理论 Self?consistent field/density functional theory | A(BA)5/纳米粒子混合物 A(BA)5/Nanoparticle mixture | 多嵌段共聚物与纳米粒子共混物的自组装行为 Self?assembly behaviors of multiblock copolymer and nanoparticle mixture |
6 | 自洽场理论 Self?consistent field theory | 线性-梳状嵌段共聚物Comb?coil block copolymer | 线性-梳状嵌段共聚物本体的自组装行为 Self?assembly behaviors of comb?coil block copolymers |
7 | 自洽场/密度泛函理论 Self?consistent field/density functional theory | 聚合物接枝纳米粒子 Polymer tethered nanoparticles | 线性嵌段共聚物与纳米粒子共价连接的体系自组装行为 Self?assembly behaviors of linear block copolymer tethered nanoparticles |
8 | 自洽场理论 Self?consistent field theory | Cx(RC)nRy刚柔共聚物 Cx(RC)nRy Rod?coil copolymer | 刚柔多嵌段共聚物本体能自组装形成多级液晶微相结构 Rod?coil multiblock copolymers can self?assemble into hierarchical smectic structures |
图1 三元十一嵌段共聚物P(IS)4IP (A,B,C)和六嵌段共聚物P(IS)2I (D, E, F)的不同形貌。 P组分的体积分数分别为(A) 8%、(B) 21%、(C) 53%、(D) 64%、(E) 75%和(F) 88%。 末端聚(2-乙烯基吡啶) (P)嵌段与聚异戊二烯(I)和聚苯乙烯(S)嵌段均不相容[25]
Fig.1 Various morphologies of undecablock terpolymers of the P(IS)4IP type (A,B,C) and hexablock terpolymers of the P(IS)2I type (D,E, F). Volume percentages of P component are (A) 8%, (B) 21%, (C) 53%, (D) 64%, (E) 75% and (F) 88%, respectively. The end poly(2-vinylpyridine) (P) are incompatible with both the polyisoprene (I) and polystyrene (S)[25]
图2 (A)由 C3-(B2A2)3B2-C3多嵌段共聚物形成的多级结构,其中aAB=75和aBC=120 (aAB表示DPD中A和B嵌段之间的作用参数)。 A、B和C嵌段分别用红色、黄色和绿色表示。 (B) C-b-(B-b-A)4-B-b-C多嵌段共聚物中,全局桥接(上)和环状(下)构象的示意图[26]
Fig.2 (A) Morphology formed by C3-(B2A2)3B2-C3 with aAB=75 and aBC=120 (aAB represents the interaction parameter bewteen A and B used in DPD sumulations). A-, B-, and C-blocks are denoted by red, yellow, and green, respectively. (B) A schematic representation of a global bridge (top) and a global loop (bottom) conformation for a C-b-(B-b-A)4-B-b-C multiblock copolymer[26]
图3 由A(BC)3多嵌段共聚物自组装形成的多级结构,其中相互作用参数分别为(A) χABN = 200、 χACN = 250和χBCN = 500,(B) χABN = 100、 χACN = 50和χBCN = 600,(C) χABN = 150、 χACN = 100和χBCN = 600。 (A)中,随着A嵌段体积分数的增加,依次观察到“层中有球”、“层中有柱”、“层中有层”、“柱中有柱”以及“球中有球”结构,并且两种长度尺度结构互相平行。 (B)和(C)中,随着A嵌段体积分数的增加,依次观察到“层中有柱”、“层中有层”、“柱中有层”以及“球中有层”结构,并且两种长度尺度结构互想垂直。A、B和C嵌段分别用蓝色、红色和绿色表示[28]
Fig.3 Hierarchical microstructures self-assembled from A(BC)3 multiblock copolymer with (A) χABN = 200, χACN = 250, and χBCN = 500, (B) χABN = 100, χACN = 50, and χBCN = 600, and (C) χABN = 150, χACN = 100, and χBCN = 600. In (A), sphere-in-lamellae, cylinders-in-lamellae, lamellae-in-lamella, cylinders-in-cylinder, and spheres-in-sphere are observed in turn with increasing the volume fractions of A blocks, and the two length-scale-order structures are in parallel. In (B) and (C), cylinders-in-lamellae, lamellae-in-lamella, lamellae-in-cylinder, and lamellae-in-sphere are observed with increasing the volume fractions of A blocks, and the two length-scale-order structures are in perpendicular. The blue, red, and green colors are assigned to A, B, and C blocks, respectively[28]
图4 A(BC)3多嵌段共聚物在不同薄膜厚度下自组装形成的多级结构:(A) L⊥1、(B) L51、(C) L71、(D) L⊥2、(E) L51//L⊥1和(F) L52。(G)多级结构一维相图对薄膜厚度Δ/rc的依赖。相互作用参数为aAB = 160、aAC = 80和aBC = 400。在形如L31的表达式中,加粗的首字母L、下标和最后一个数字分别表示层状、平行排列以及小尺度结构层数(符号⊥表示两个长度尺度结构互相垂直)[29]
Fig.4 Hierarchical microstructures self-assembled from A(BC)3 multiblock copolymer thin films: (A) L⊥1, (B) L51, (C) L71, (D) L⊥2, (E) L51//L⊥1, and (F) L52. (G) One-dimensional diagram for hierarchical microstructures as a function of Δ/rc. The interaction parameters are aAB = 160, aAC = 80, aBC = 400. In the representations such as L31, the first bold letter L, subscripts, and last number denote lamellae, the number of the parallel packed small-length-scale lamellae (the symbol ⊥ means that the small-length-scale lamellae are perpendicular to the large-length-scale lamellae), and the number of the large-length-scale structures, respectively[29]
图5 (A)线性-交替共聚物/纳米粒子混合物中纳米粒子的二位密度分布图。灰色表示较低的纳米粒子局部体积分数,黑色表示较高的纳米粒子局部体积分数。(B)沿着层状平面法方向,A链段和纳米粒子的密度分布图。(C)纳米粒子在线性-交替共聚物形成的多级层状结构中的分布示意图。(D)不同纳米粒子半径RP和纳米粒子浓度ΨP下,纳米粒子在多级层状结构中的分布[32]
Fig.5 (A) Two-dimensional density profile of nanoparticles for linear-alternating copolymer/nanoparticle system. Light gray regions represent lower local volume fraction of particles, while black regions represent higher local volume fraction of particles. (B) Distribution profiles of A-type segments and nanoparticles along the line normal to lamella. (C) Schematic representation of the nanoparticle arrangement in the lamellar-within-lamellar structure formed by the linear-alternating copolymers. (D) Nanoparticle distribution in the lamellar-within-lamellar structure for a range of nanoparticle radii RP and nanoparticle concentrations ΨP[32]
图6 (A)线性-梳状嵌段共聚物的分子构型示意图。(B) (1)线性嵌段、梳状嵌段的(2)主链和(3)侧链在多级结构中的二维密度分布:(a)平行层中有层、(b)垂直层中有层、(c)层中有柱、(d)柱中有层和(e)柱中有柱结构。深色和浅灰色区域分别表示对应组分高和低局部体积分数。(4)共聚物分子在多级结构中可能的构象,其中淡蓝色、白色和淡红色区域分别代表线性嵌段、梳状嵌段的主链和侧链。蓝线和红线分别表示主链和侧链[35]
Fig.6 (A) Schematic presentation of the comb-coil block copolymer. (B) Two-dimensional density plots of (1) coil blocks, (2) A blocks of comb blocks, and (3) branches for various structures: (a) parallel lamella-within-lamella, (b) perpendicular lamella-within-lamella, (c) cylinder-within-lamella, (d) lamella-within-cylinder, and (e) cylinder-within-cylinder. Dark- and light-gray regions indicate high and low local volume fractions of a species, respectively. Image 4 shows corresponding schematic illustrations, where the light-blue, white, and light-red regions represent coil block domains, domains rich in A blocks of the comb block, and branch domain, respectively. The blue and red lines denote the A and B blocks, respectively[35]
图7 ABP大分子在不同的A嵌段体积分数下自组装形成的有序结构:(A) fA = 0.2,纳米粒子形成的柱状结构以六边形排列(CP)、(B) fA = 0.4,纳米粒子在A嵌段形成的柱状结构界面处形成柱状结构(CP-in-C)、(C) fA = 0.6,层上界面处有圆柱状纳米粒子(CP-in-LⅠ)、(D) fA = 0.8,层中有圆柱状纳米粒子(CP-in-LⅡ)和(E) fA = 0.9,纳米粒子圆柱状(CP)。纳米粒子半径为RP/Rg = 0.4,Flory-Huggins参数为χABN = χAPN = χBPN = 30.0。蓝色、红色和绿色分别表示A嵌段、B嵌段和P纳米粒子[37]
Fig.7 Ordered nanostructures self-assembled from ABP macromolecules with various A block volume fractions: (A) cylinders whose minority domains are occupied by nanoparticles (CP), fA = 0.2; (B) cylinders with nanoparticle cylinders at the interfaces (CP-in-C), fA = 0.4; (C) lamellae with nanoparticle cylinders at the interfaces (CP-in-LⅠ), fA = 0.6; (D) lamellae with nanoparticle cylinders inside the domain (CP-in-LⅡ), fA = 0.8; (E) cylinders (CP), fA = 0.9. The parameters are RP/Rg = 0.4 and the Flory-Huggins interaction parameters χABN = χAPN = χBPN = 30.0. The blue, red and green colors are assigned to A blocks, B blocks, and P particles, respectively[37]
图8 (A)多级液晶微相结构中,短刚性链段和长末端刚性链的有序度参数S?与分凝强度χN的关系。(B)随着有序度参数的变化,Iso-in-SA向SC-in-SC相转变的示意图。每个嵌段的体积分数为fC? = ΔfC = 0.15、ΔfR = 0.21和fR? = 0.49。Iso-in-SA表示大尺度结构为垂直排列向列型液晶相SA和小尺度结构为各向同性液晶相Iso的多级液晶微相结构[24]
Fig.8 (A) Order parameter S? of short rod (Rodfirst) and long end rod (Rodsecond) as a function of interaction strength for χN for hierarchical smectic phases. (B) Schematic illustration of the phase transition between Iso-in-SA and SC-in-SC with the variation of order parameter S?. The volume fractions of each block are fC? = ΔfC = 0.15, ΔfR = 0.21, and fR? = 0.49. Iso-in-SA represents that a hierarchical smectic microstructure including isotropic phases (small-length-scale) and SA (large-length-scale)[24]
图9 A(BC)2多嵌段共聚物中各组分的沿着z方向的一维密度曲线和二维密度分布,其中A嵌段体积分数为0.5,分凝强度为(A) χN = 48、(B) χN = 64和(C) χN = 80。A(BC)2多嵌段共聚物和AB两嵌段共聚物的无量纲(D)拉伸模量K33、(E)剪切模量K44和(F)杨氏模量E对分凝强度χN的依赖。两种嵌段共聚物中分凝强度一致[43]
Fig.9 One-dimensional density profiles of A, B, and C blocks of A(BC)2 multiblock copolymers with fA = 0.5 along the z-direction at various χN: (A) χN = 48, (B) χN = 64, and (C) χN = 80. The top images show the corresponding two-dimensional structures. Dimensionless (D) extensional moduli (K33), (E) shear moduli (K44), and (F) Young’s moduli (E) as a function of χN for A(BC)2 multiblock copolymers and AB diblock copolymers, respectively. The interaction strength χN in diblock and multiblock copolymers are the same[43]
图10 3种剪切方式(A)平行剪切、(B)垂直剪切和(C)横截剪切下,几种结构中经垂直平移的储能模量G ?和损耗模量G"与剪切频率关系。图(B)和(C)中的平移因子与(A)中相同。 图中右下角的插图是剪切方式的示意图,其中实线表示剪切方向而虚线表示速度梯度方向[44]
Fig.10 Vertically modulus-shifted master curves for the storage (G ?) and loss moduli (G") as a function of shear frequency for various structures with various directions of shear: (A) parallel, (B) vertical, and (C) transverse. In (B) and (C), the shift factors appear as same as those in (A). Insets at the bottom of (A), (B), and (C) are schematic illustrations of three shearing ways, where the solid arrow represents shear direction, and the dashed arrow denotes the velocity gradient[44]
图11 不同排斥参数aDA下,D?(AD)A?多嵌段共聚物和DA两嵌段共聚物的光电性能:(A)短路电流Jsc,(B)开路电压Voc,(C)填充因子FF以及(D)能量转化效率η。给体D和受体A的体积比为1∶1。两嵌段共聚物所采用的嵌段长度与多嵌段共聚物的长嵌段长度相同[23]
Fig.11 Plots of (A) short-current density (Jsc), (B) open-circuit voltages (Voc), (C) fill factor (FF), and (D) power conversion efficiencies (η) as a function of repulsive interaction parameter aDA for D?(AD)A? multiblock copolymers and DA diblock. The ration of donors D to acceptors A is 1∶1. The adopted block length of the diblock copolymer is the same as that of the long block of the multiblock copolymer[23]
图12 (A) FDTD模拟的示意图。(B)实线为aCN变化时A(BC)1/NP自组装结构的光吸收谱,虚线为AB/NP自组装得到的普通层状结构的吸收光谱。(C) A(BC)1/NP自组装结构的积分光吸收率对相互作用参数aCN的依赖。(D) A(BC)1/NP自组装结构的吸收峰位置对相互作用参数aCN的依赖[46]
Fig.12 (A) Schematic illustration of the computational domain used in the FDTD simulations. (B) The solid lines are the optical absorption spectra of A(BC)1/NP mixtures at various aCN. The dashed line is the optical absorption spectrum of the AB/NP mixture with a general lamellar structure. (C) Plot of the integrated absorption (IA) of A(BC)1/NP mixtures as a function of the repulsive parameter aCN. (D) Plot of the wavelength of absorption peak of A(BC)1/NP mixtures as a function of aCN[46]
1 | BAER E, HILTNER A, KEITH H. Hierarchical structure in polymeric materials[J]. Science, 1987, 235(4792): 1015-1022. |
2 | LAKES R. Materials with structural hierarchy[J]. Nature, 1993, 361(6412): 511-515. |
3 | JÄGER I, FRATZL P. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles[J]. Biophys J, 2000, 79(4): 1737-1746. |
4 | AUTUMN K, LIANG Y A, HSIEH S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000, 405(6787): 681-685. |
5 | FRATZL P, GUPTA H, PASCHALIS E, et al. Structure and mechanical quality of the collagen-mineral nano-composite in bone[J]. J Mater Chem, 2004, 14(14): 2115-2123. |
6 | BUTT H, YETISEN A K, MISTRY D, et al. Morpho butterfly-inspired nanostructures[J]. Adv Opt Mater, 2016, 4(4): 497-504. |
7 | 张鸿昊, 林乃波, 刘向阳. 蚕丝和蜘蛛丝纤维多级结构对力学性能的影响[J]. 功能高分子学报, 2018, 31(6): 501-512. |
ZHANG H H, LIN N B, LIU X Y. Effects of multi-level structure of silk and spider silk on mechanical properties[J]. J Funct Polym, 2018, 31(6): 501-512. | |
8 | SANCHEZ C, ARRIBART H, GUILLE M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems[J]. Nat Mater, 2005, 4(4): 277-288. |
9 | 张彬, 张一波, 杨向光. 多级结构还原氧化石墨烯包覆的钴铁氧体的合成及电化学性能[J]. 应用化学, 2014, 31(12): 1447-1452. |
ZHANG B, ZHANG Y B, YANG X G. Synthesis and electrochemical performance of reduced graphene oxide coated cobalt iron oxide with hierarchical structure[J]. Chinese J Appl Chem, 2014, 31(12): 1447-1452. | |
10 | 隋丽丽, 姜惠烨, 王荻, 等. 多级结构NiO微球的构筑及对刚果红染料的吸附性能[J]. 应用化学, 2021, 38(4): 447-456. |
SUI L L, JIANG H Y, WANG D, et al. Construction of hierarchical NiO microspheres and the adsorption capacity to congo red azo-dye[J]. Chinese J Appl Chem, 2021, 38(4): 447-456. | |
11 | 林进义, 白鲁冰, 安翔, 等. 光电高分子多级结构[J]. 高分子通报, 2019(10): 64-73. |
LIN J Y, BAI L B, AN X, et al. Herarchical structure of optoelectronic polymer[J]. Polym Bull, 2019(10): 64-73. | |
12 | QIN Z, KREPLAK L, BUEHLER M J. Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments[J]. PLoS One, 2009, 4(10): e7294. |
13 | 崔旭远, 高万贤. 仿生超疏水材料的研究现状及发展前景[J]. 针织工业, 2018(1): 63-67. |
CUI X Y, GAO W X. Research situation and development prospect of bionic super-hydrophobic materials[J]. Knit Ind, 2018(1): 63-67. | |
14 | ZUO F, ALFONZO C G, BATES F S. Structure and mechanical behavior of elastomeric multiblock terpolymers containing glassy, rubbery, and semicrystalline blocks[J]. Macromolecules, 2011, 44(20): 8143-8153. |
15 | SCHEIRS J, PRIDDY D. Modern styrenic polymers: polystyrenes and styrenic copolymers[M]. John Wiley Sons, 2003. |
16 | WANG L, LIN J, ZHANG X. Hierarchical microstructures self-assembled from polymer systems[J]. Polymer, 2013, 54(14): 3427-3442. |
17 | XU Z, LIN J, ZHANG Q, et al. Theoretical simulations of nanostructures self-assembled from copolymer systems[J]. Polym Chem, 2016, 7(23): 3783-3811. |
18 | ALFONZO C G, FLEURY G, CHAFFIN K A, et al. Synthesis and characterization of elastomeric heptablock terpolymers structured by crystallization[J]. Macromolecules, 2010, 43(12): 5295-5305. |
19 | PHATAK A, LIM L S, REAVES C K, et al. Toughness of glassy-semicrystalline multiblock copolymers[J]. Macromolecules, 2006, 39(18): 6221-6228. |
20 | FLEURY G, BATES F S. Structure and properties of hexa- and undecablock terpolymers with hierarchical molecular architectures[J]. Macromolecules, 2009, 42(10): 3598-3610. |
21 | MANSOUR A S, LODGE T P, BATES F S. Mechanical properties of glass continuous poly(cyclohexylethylene) block copolymers[J]. J Polym Sci Part B: Polym Phys, 2012, 50(10): 706-717. |
22 | CHEN W, XU T, HE F, et al. Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells[J]. Nano Lett, 2011, 11(9): 3707-3713. |
23 | XU Z, LIN J, ZHANG L, et al. Distinct photovoltaic performance of hierarchical nanostructures self-assembled from multiblock copolymers[J]. ACS Appl Mater Interfaces, 2018, 10(26): 22552-22561. |
24 | ZHU X, WANG L, LIN J. Self-assembly of rod-coil multiblock copolymers: a strategy for creating hierarchical smectic structures[J]. J Phys Chem B, 2013, 117(18): 5748-5756. |
25 | MATSUSHITA Y. Precise molecular design of complex polymers and morphology control of their hierarchical multiphase structures[J]. Polym J, 2008, 40(3): 177-183. |
26 | KLYMKO T, MARKOV V, SUBBOTIN A, et al. Lamellar-in-lamellar self-assembled C-b-(B-b-A)m-b-B-b-C multiblock copolymers: alexander-de Gennes approach and dissipative particle dynamics simulations[J]. Soft Matter, 2009, 5(1): 98-103. |
27 | FLEURY G, BATES F S. Perpendicular lamellae in parallel lamellae in a hierarchical CECEC-P hexablock terpolymer[J]. Macromolecules, 2009, 42(5): 1691-1694. |
28 | WANG L, LIN J, ZHANG L. Hierarchically ordered microstructures self-assembled from A(BC)n multiblock copolymers[J]. Macromolecules, 2010, 43(3): 1602-1609. |
29 | ZHANG X, WANG L, ZHANG L, et al. Controllable hierarchical microstructures self-assembled from multiblock copolymers confined in thin films[J]. Langmuir, 2015, 31(8): 2533-2544. |
30 | HUANG E, RUSSELL T, HARRISON C, et al. Using surface active random copolymers to control the domain orientation in diblock copolymer thin films[J]. Macromolecules, 1998, 31(22): 7641-7650. |
31 | RUSSELL T, MENELLE A, ANASTASIADIS S, et al. Unconventional morphologies of symmetric, diblock copolymers due to film thickness constraints[J]. Macromolecules, 1991, 24(23): 6263-6269. |
32 | ZHANG L, LIN J. Hierarchically ordered nanocomposites self-assembled from linear-alternating block copolymer/nanoparticle mixture[J]. Macromolecules, 2009, 42(4): 1410-1414. |
33 | LIN Y, BÖKER A, HE J, et al. Self-directed self-assembly of nanoparticle/copolymer mixtures[J]. Nature, 2005, 434(7029): 55-59. |
34 | THOMPSON R B, GINZBURG V V, MATSEN M W, et al. Predicting the mesophases of copolymer-nanoparticle composites[J]. Science, 2001, 292(5526): 2469-2472. |
35 | WANG L, LIN J, ZHANG L. Hierarchically ordered microstructures self-assembled from comb-coil block copolymers[J]. Langmuir, 2009, 25(8): 4735-4742. |
36 | VAN ZOELEN W, ALBERDA VAN EKENSTEIN G, IKKALA O, et al. Incorporation of PPE in lamellar self-assembled PS-b-P4VP(PDP) supramolecules and PS-b-P4VP diblock copolymers[J]. Macromolecules, 2006, 39(19): 6574-6579. |
37 | ZHU X, WANG L, LIN J, et al. Ordered nanostructures self-assembled from block copolymer tethered nanoparticles[J]. ACS Nano, 2010, 4(9): 4979-4988. |
38 | YOCKELL-LELIÈVRE H, DESBIENS J, RITCEY A M. Two-dimensional self-organization of polystyrene-capped gold nanoparticles[J]. Langmuir, 2007, 23(5): 2843-2850. |
39 | HAATAJA J S, HOUBENOV N, IATROU H, et al. Double smectic self-assembly in block copolypeptide complexes[J]. Biomacromolecules, 2012, 13(11): 3572-3580. |
40 | MAEDA R, HAYAKAWA T, TOKITA M, et al. Double liquid crystalline side-chain type block copolymers for hierarchically ordered nanostructures: synthesis and morphologies in the bulk and thin film[J]. React Funct Polym, 2009, 69(7): 519-529. |
41 | XIE H L, JIE C K, YU Z Q, et al. Hierarchical supramolecular ordering with biaxial orientation of a combined main-chain/side-chain liquid-crystalline polymer obtained from radical polymerization of 2-vinylterephthalate[J]. J Am Chem Soc, 2010, 132(23): 8071-8080. |
42 | WANG K, CHEN F, LI Z, et al. Control of the hierarchical structure of polymer articles via “structuring” processing[J]. Prog Polym Sci, 2014, 39(5): 891-920 |
43 | ZHU X, WANG L, LIN J. Distinct elastic response to hierarchical nanostructures[J]. Macromolecules, 2011, 44(20): 8314-8323. |
44 | HONG W, LIN J, TIAN X, et al. Distinct viscoelasticity of hierarchical nanostructures self-assembled from multiblock copolymers[J]. Macromolecules, 2020, 53(24): 10955-10963. |
45 | RIISE B L, FREDRICKSON G H, LARSON R G, et al. Rheology and shear-induced alignment of lamellar diblock and triblock copolymers[J]. Macromolecules, 1995, 28(23): 7653-7659. |
46 | YAN H, COLLINS B A, GANN E, et al. Correlating the efficiency and nanomorphology of polymer blend solar cells utilizing resonant soft X-ray scattering[J]. ACS Nano, 2012, 6(1): 677-688. |
47 | LIU Z, XU Z, WANG L, et al. Distinctive optical properties of hierarchically ordered nanostructures self-assembled from multiblock copolymer/nanoparticle mixtures[J]. Macromol Rapid Commun, 2020, 41(12): e2000131. |
48 | BOCKSTALLER M R, THOMAS E L. Proximity effects in self-organized binary particle-block copolymer blends[J]. Phys Rev Lett, 2004, 93(16): 166106. |
49 | YEN W C, LEE Y H, LIN J F, et al. Effect of TiO2 nanoparticles on self-assembly behaviors and optical and photovoltaic properties of the P3HT-b-P2VP block copolymer[J]. Langmuir, 2011, 27(1): 109-115. |
50 | LI F, SHI Y, YUAN K, et al. Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance[J]. New J Chem, 2013, 37(1): 195-203. |
[1] | 陶雨晨, 候晓慧, 尹登科, 杨晔. 基于电场调控的胆固醇基液晶薄膜对成纤维细胞生长分化的影响[J]. 应用化学, 2023, 40(4): 546-553. |
[2] | 唐永鑫, 聂立武. 环氧树脂掺量对发光树脂透水混凝土性能的影响[J]. 应用化学, 2022, 39(11): 1665-1671. |
[3] | 潘勇, 齐延新, 李晓媛, 黄宇彬. 基于高分子的疫苗递送系统构建和应用[J]. 应用化学, 2021, 38(5): 582-591. |
[4] | 隋丽丽, 姜惠烨, 王荻, 黄微微, 隋崴崴, 申书昌, 王平, 张文治, 王文波, 赵冰, 刘勇智. 多级结构NiO微球的构筑及对刚果红染料的吸附性能[J]. 应用化学, 2021, 38(4): 447-456. |
[5] | 邹呈, 高延子, 于美娜, 肖久梅, 张兰英, 杨槐. 液晶/高分子复合材料及其在反式电控调光膜中的应用研究进展[J]. 应用化学, 2021, 38(10): 1213-1225. |
[6] | 纪宇帆, 蔡锋, 于海峰. 液晶聚合物的表面形貌光调控研究进展[J]. 应用化学, 2021, 38(10): 1226-1237. |
[7] | 罗龙飞, 李玉洁, 沈志豪, 郑世军, 范星河. 偶氮苯液晶嵌段共聚物薄膜自组装和光响应性研究进展[J]. 应用化学, 2021, 38(10): 1238-1254. |
[8] | 陈爱华, 张承鋆, 邓子超, 孙亚兰. 液晶嵌段共聚物液相自组装体的结构调控[J]. 应用化学, 2021, 38(10): 1255-1267. |
[9] | 王丹, 彭海炎, 周兴平, 解孝林. 全息高分子/液晶复合材料的研究进展[J]. 应用化学, 2021, 38(10): 1268-1298. |
[10] | 张帅, 杨洋, 吉岩, 危岩. 磁响应液晶弹性体材料研究进展[J]. 应用化学, 2021, 38(10): 1299-1309. |
[11] | 崔永杰, 钟佳鑫, 廖勋凡, 陈义旺. 液晶分子在有机太阳能电池中的应用研究进展[J]. 应用化学, 2021, 38(10): 1326-1339. |
[12] | 张昭永, 李谦, 王大霖, 方江邻, 谌东中. 含侧链盘状苯并菲和棒状偶氮苯的二嵌段液晶共聚物的可控合成及其光物理性质[J]. 应用化学, 2021, 38(10): 1340-1352. |
[13] | 邓媛, 范遥见, 陶磊, 骆支旺, 谢鹤楼. 含有偶氮苯液晶纳米粒子的合成及其超分子结构和光控取向行为[J]. 应用化学, 2021, 38(10): 1353-1361. |
[14] | 骆沙曼, 孙浩哲, 颜世强, 黄晖, 张炜佳, 韦嘉, 俞燕蕾. 含偶氮苯的光致形变液晶聚合物的细胞生物相容性[J]. 应用化学, 2021, 38(10): 1371-1381. |
[15] | 顾军渭, 程蓓, 杨旭彤. 液晶功能化氮化硼/液晶环氧树脂导热复合材料的制备[J]. 应用化学, 2021, 38(10): 1382-1388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||