应用化学 ›› 2021, Vol. 38 ›› Issue (10): 1326-1339.DOI: 10.19894/j.issn.1000-0518.210359
崔永杰1‡, 钟佳鑫1‡, 廖勋凡1,2(), 陈义旺1,2()
收稿日期:
2021-07-22
接受日期:
2021-09-05
出版日期:
2021-10-01
发布日期:
2021-10-15
通讯作者:
廖勋凡,陈义旺
作者简介:
‡共同第一作者
基金资助:
Yong-Jie CUI1‡, Jia-Xin ZHONG1‡, Xun-Fan LIAO1,2(), Yi-Wang CHEN1,2()
Received:
2021-07-22
Accepted:
2021-09-05
Published:
2021-10-01
Online:
2021-10-15
Contact:
Xun-Fan LIAO,Yi-Wang CHEN
About author:
ywchen@ncu.edu.cn; xfliao@jxnu.edu.cn
Supported by:
摘要:
液晶分子应用于有机太阳能电池器件是近年来光电领域的研究热点之一。液晶分子是一类兼具晶体和液体性质的功能性软材料,且具有较强的自组装特性。利用液晶分子的光吸收互补可有效调控有机太阳能电池的光吸收范围。此外,液晶分子具有强结晶性,能诱导活性层分子自组装提高其有序性,同时能提高分子结晶性能,从而提高活性层电荷迁移率,最终提高有机太阳能电池器件的短路电流和填充因子。因此,本文从液晶分子在活性层组分中发挥的作用出发,综述了其分别作为有机太阳能电池活性层材料和添加剂的研究进展。最后,对液晶分子在有机太阳能电池应用过程中存在的问题及今后的发展进行了总结和展望。
中图分类号:
崔永杰, 钟佳鑫, 廖勋凡, 陈义旺. 液晶分子在有机太阳能电池中的应用研究进展[J]. 应用化学, 2021, 38(10): 1326-1339.
Yong-Jie CUI, Jia-Xin ZHONG, Xun-Fan LIAO, Yi-Wang CHEN. Research Progress of Liquid Crystal Molecules for Application in Organic Solar Cells[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1326-1339.
图4 偶氮苯、联苯、苯并菲和苯并蔻类液晶分子的化学结构式[27,31,41-42,45-47]
Fig.4 Chemical structures of azobenzene, biphenyl, triphenylene and hexabenzocoronene liquid crystals[27,31,41-42,45-47]
活性层 Active layer | 给体/受体质量比D/A mass ratio | 空穴传输层 Hole transport layer | 电子传输层 Electron transport layer | 开路电压 Voc/V | 短路电流Jsc/(mA·cm-2) | 填充因子FF/% | 能量转换效率PCE/% | 参考文献Ref. |
---|---|---|---|---|---|---|---|---|
PFcbpDTBT:PC61BM | 1∶3 | PEDOT:PSS | LiF | 0.68 | 3.38 | 48 | 1.10 | [ |
P3HT:C60?bp?CN | 1∶1 | PEDOT:PSS | LiF | 0.52 | 5.5 | 23 | 0.65 | [ |
P3HT?b?Pterph:PC61BM | 1∶1 | PEDOT:PSS | LiF | 0.54 | 4.42 | 23.6 | 0.56 | [ |
P3HT?b?PTP:PC61BM | 1∶1 | PEDOT:PSS | LiF | 0.56 | 4.73 | 23.9 | 0.63 | [ |
BTR:PC71BM | 1∶1 | PEDOT:PSS | Ca | 0.90 | 13.90 | 74.1 | 9.3 | [ |
BTR:Y6:PC71BM | 1.6∶0.7∶0.3 | PEDOT:PSS | Phen?NaDPO | 0.859 | 22.21 | 62 | 11.82 | [ |
BTR:Y6 | 1.6∶1 | PEDOT:PSS | Phen?NaDPO | 0.85 | 22.25 | 56.4 | 10.67 | [ |
BTR?Cl:Y6 | 1.6∶1 | PEDOT:PSS | Phen?NaDPO | 0.86 | 24.17 | 65.5 | 13.61 | [ |
BTR?Cl:Y6:PC71BM | 1.8∶1∶0.1 | PEDOT:PSS | Phen?NaDPO | 0.837 | 23.75 | 77.11 | 15.34 | [ |
BTR?Cl:Y6 | 1.6∶1 | PEDOT:PSS | ZrAcac | 0.829 | 23.42 | 68.9 | 13.48 | [ |
BTR?Cl:Y6:anti?PDFC | 1.6∶1∶0.1 | PEDOT:PSS | ZrAcac | 0.837 | 23.97 | 72.6 | 14.56 | [ |
BTR?Cl:Y6:syn?PDFC | 1.6∶1∶0.15 | PEDOT:PSS | ZrAcac | 0.839 | 23.41 | 71.8 | 14.09 | [ |
BTR?Cl:Y6:PDFC?Ph | 1.6∶1∶0.1 | PEDOT:PSS | ZrAcac | 0.837 | 23.62 | 65 | 12.76 | [ |
BTR?Cl:Y6:anti?PDFC:PC71BM | 1.7∶1∶0.1∶0.1 | PEDOT:PSS | ZrAcac | 0.836 | 25.01 | 74.9 | 15.67 | [ |
BTR:Y6 | 1∶0.6 | PEDOT:PSS | Phen?NaDPO | 0.83 | 22.1 | 61 | 11.1 | [ |
BTR?TE:Y6 | 1∶0.6 | PEDOT:PSS | Phen?NaDPO | 0.84 | 23.4 | 67 | 13.2 | [ |
BTR?TIPS:Y6 | 1∶0.6 | PEDOT:PSS | Phen?NaDPO | 0.83 | 18.5 | 54 | 8.3 | [ |
NDT?3T?R4:Y6 | 1∶0.6 | PEDOT:PSS | Ca | 0.76 | 17.02 | 71.4 | 9.2 | [ |
NDT?3T?R6:Y6 | 1∶0.8 | PEDOT:PSS | Ca | 0.78 | 18.89 | 72.8 | 10.7 | [ |
BQR:PC71BM | 1∶1 | PEDOT:PSS | Ca | 0.92 | 14.90 | 65 | 8.9 | [ |
DPP?TP6:PC71BM | 1∶1 | PEDOT:PSS | LiF | 0.93 | 8.4 | 55 | 4.3 | [ |
表1 液晶分子用作有机太阳能电池活性层的器件性能参数
Table 1 Device performance parameters of liquid crystal molecules as active layer of organic solar cells
活性层 Active layer | 给体/受体质量比D/A mass ratio | 空穴传输层 Hole transport layer | 电子传输层 Electron transport layer | 开路电压 Voc/V | 短路电流Jsc/(mA·cm-2) | 填充因子FF/% | 能量转换效率PCE/% | 参考文献Ref. |
---|---|---|---|---|---|---|---|---|
PFcbpDTBT:PC61BM | 1∶3 | PEDOT:PSS | LiF | 0.68 | 3.38 | 48 | 1.10 | [ |
P3HT:C60?bp?CN | 1∶1 | PEDOT:PSS | LiF | 0.52 | 5.5 | 23 | 0.65 | [ |
P3HT?b?Pterph:PC61BM | 1∶1 | PEDOT:PSS | LiF | 0.54 | 4.42 | 23.6 | 0.56 | [ |
P3HT?b?PTP:PC61BM | 1∶1 | PEDOT:PSS | LiF | 0.56 | 4.73 | 23.9 | 0.63 | [ |
BTR:PC71BM | 1∶1 | PEDOT:PSS | Ca | 0.90 | 13.90 | 74.1 | 9.3 | [ |
BTR:Y6:PC71BM | 1.6∶0.7∶0.3 | PEDOT:PSS | Phen?NaDPO | 0.859 | 22.21 | 62 | 11.82 | [ |
BTR:Y6 | 1.6∶1 | PEDOT:PSS | Phen?NaDPO | 0.85 | 22.25 | 56.4 | 10.67 | [ |
BTR?Cl:Y6 | 1.6∶1 | PEDOT:PSS | Phen?NaDPO | 0.86 | 24.17 | 65.5 | 13.61 | [ |
BTR?Cl:Y6:PC71BM | 1.8∶1∶0.1 | PEDOT:PSS | Phen?NaDPO | 0.837 | 23.75 | 77.11 | 15.34 | [ |
BTR?Cl:Y6 | 1.6∶1 | PEDOT:PSS | ZrAcac | 0.829 | 23.42 | 68.9 | 13.48 | [ |
BTR?Cl:Y6:anti?PDFC | 1.6∶1∶0.1 | PEDOT:PSS | ZrAcac | 0.837 | 23.97 | 72.6 | 14.56 | [ |
BTR?Cl:Y6:syn?PDFC | 1.6∶1∶0.15 | PEDOT:PSS | ZrAcac | 0.839 | 23.41 | 71.8 | 14.09 | [ |
BTR?Cl:Y6:PDFC?Ph | 1.6∶1∶0.1 | PEDOT:PSS | ZrAcac | 0.837 | 23.62 | 65 | 12.76 | [ |
BTR?Cl:Y6:anti?PDFC:PC71BM | 1.7∶1∶0.1∶0.1 | PEDOT:PSS | ZrAcac | 0.836 | 25.01 | 74.9 | 15.67 | [ |
BTR:Y6 | 1∶0.6 | PEDOT:PSS | Phen?NaDPO | 0.83 | 22.1 | 61 | 11.1 | [ |
BTR?TE:Y6 | 1∶0.6 | PEDOT:PSS | Phen?NaDPO | 0.84 | 23.4 | 67 | 13.2 | [ |
BTR?TIPS:Y6 | 1∶0.6 | PEDOT:PSS | Phen?NaDPO | 0.83 | 18.5 | 54 | 8.3 | [ |
NDT?3T?R4:Y6 | 1∶0.6 | PEDOT:PSS | Ca | 0.76 | 17.02 | 71.4 | 9.2 | [ |
NDT?3T?R6:Y6 | 1∶0.8 | PEDOT:PSS | Ca | 0.78 | 18.89 | 72.8 | 10.7 | [ |
BQR:PC71BM | 1∶1 | PEDOT:PSS | Ca | 0.92 | 14.90 | 65 | 8.9 | [ |
DPP?TP6:PC71BM | 1∶1 | PEDOT:PSS | LiF | 0.93 | 8.4 | 55 | 4.3 | [ |
活性层 Active layer | 添加剂含量 Additive contents/% | 空穴传输层 Hole transport layer | 电子传输层 Electron transport layer | 开路电压Voc/V | 短路电流Jsc/(mA·cm-2) | 填充因子FF/% | 能量转换效率PCE/% | 参考文献Ref. |
---|---|---|---|---|---|---|---|---|
P3HT:PC61BM:AZO1 | 5 | PEDOT:PSS | - | 0.53 | 16.48 | 30 | 2.44 | [ |
P3HT:PC61BM:AZO2 | 5 | PEDOT:PSS | - | 0.48 | 16.73 | 31 | 2.40 | [ |
P3HT:PC61BM:5CB | 3 | PEDOT:PSS | LiF | 0.604 | 8.86 | 61.13 | 3.27 | [ |
P3HT:PC61BM:8CB | 4 | PEDOT:PSS | LiF | 0.604 | 9.64 | 63.94 | 3.72 | [ |
P3HT:PC61BM:DLC1 | 3 | PEDOT:PSS | LiF | 0.65 | 9.30 | 63.60 | 3.90 | [ |
P3HT:PC61BM:DLC2 | 3 | PEDOT:PSS | LiF | 0.67 | 9.15 | 64.94 | 3.97 | [ |
P3HT:PC61BM:5CT | 3 | PEDOT:PSS | LiF | 0.621 | 9.87 | 56.6 | 3.5 | [ |
P3HT:PC61BM:P3HT?b?Pterph | 3 | PEDOT:PSS | LiF | 0.60 | 9.58 | 58.1 | 3.34 | [ |
P3HT:PC61BM:P3HT?b?PTP | 5 | PEDOT:PSS | LiF | 0.60 | 10.36 | 64.9 | 4.03 | [ |
PTB7?Th:BTR:PC71BM | 25 | MoO3 | ZnO | 0.75 | 21.4 | 70 | 11.40 | [ |
PTB7?Th:BTR:PC71BM | 10 | PEDOT:PSS | PFN | 0.78 | 19.23 | 72.21 | 10.83 | [ |
PCE10:BTR:PC71BM | 20 | MoOx | ZnO | 0.794 | 17.62 | 64.52 | 10.88 | [ |
PM6:BTR:Y6 | 5 | PEDOT:PSS | PFNBr | 0.839 | 25.8 | 76.7 | 16.6 | [ |
P3HT:PC61BM:DFBT?TT6 | 4 | MoO3 | ZnO | 0.626 | 9.27 | 67.3 | 3.91 | [ |
PM6:Y6:DFBT?TT6 | 3 | PEDOT:PSS | PDINO | 0.845 | 26.56 | 76 | 17.05 | [ |
PTB7:DPP?TP6:PC71BM | 8 | MoO3 | ZnO | 0.73 | 15.54 | 69.2 | 7.85 | [ |
表2 液晶分子用作有机太阳能电池添加剂的器件性能参数
Table 2 Device performance parameters of liquid crystal molecules as additive of organic solar cells
活性层 Active layer | 添加剂含量 Additive contents/% | 空穴传输层 Hole transport layer | 电子传输层 Electron transport layer | 开路电压Voc/V | 短路电流Jsc/(mA·cm-2) | 填充因子FF/% | 能量转换效率PCE/% | 参考文献Ref. |
---|---|---|---|---|---|---|---|---|
P3HT:PC61BM:AZO1 | 5 | PEDOT:PSS | - | 0.53 | 16.48 | 30 | 2.44 | [ |
P3HT:PC61BM:AZO2 | 5 | PEDOT:PSS | - | 0.48 | 16.73 | 31 | 2.40 | [ |
P3HT:PC61BM:5CB | 3 | PEDOT:PSS | LiF | 0.604 | 8.86 | 61.13 | 3.27 | [ |
P3HT:PC61BM:8CB | 4 | PEDOT:PSS | LiF | 0.604 | 9.64 | 63.94 | 3.72 | [ |
P3HT:PC61BM:DLC1 | 3 | PEDOT:PSS | LiF | 0.65 | 9.30 | 63.60 | 3.90 | [ |
P3HT:PC61BM:DLC2 | 3 | PEDOT:PSS | LiF | 0.67 | 9.15 | 64.94 | 3.97 | [ |
P3HT:PC61BM:5CT | 3 | PEDOT:PSS | LiF | 0.621 | 9.87 | 56.6 | 3.5 | [ |
P3HT:PC61BM:P3HT?b?Pterph | 3 | PEDOT:PSS | LiF | 0.60 | 9.58 | 58.1 | 3.34 | [ |
P3HT:PC61BM:P3HT?b?PTP | 5 | PEDOT:PSS | LiF | 0.60 | 10.36 | 64.9 | 4.03 | [ |
PTB7?Th:BTR:PC71BM | 25 | MoO3 | ZnO | 0.75 | 21.4 | 70 | 11.40 | [ |
PTB7?Th:BTR:PC71BM | 10 | PEDOT:PSS | PFN | 0.78 | 19.23 | 72.21 | 10.83 | [ |
PCE10:BTR:PC71BM | 20 | MoOx | ZnO | 0.794 | 17.62 | 64.52 | 10.88 | [ |
PM6:BTR:Y6 | 5 | PEDOT:PSS | PFNBr | 0.839 | 25.8 | 76.7 | 16.6 | [ |
P3HT:PC61BM:DFBT?TT6 | 4 | MoO3 | ZnO | 0.626 | 9.27 | 67.3 | 3.91 | [ |
PM6:Y6:DFBT?TT6 | 3 | PEDOT:PSS | PDINO | 0.845 | 26.56 | 76 | 17.05 | [ |
PTB7:DPP?TP6:PC71BM | 8 | MoO3 | ZnO | 0.73 | 15.54 | 69.2 | 7.85 | [ |
图7 (a)不同膜厚的器件的J-V曲线和器件结构示意图[33]; (b)纯BTR、PTB7-Th和共混PTB7-Th:BTR薄膜在640 nm光激发下的荧光光谱和(c)纯PTB7-Th、BTR和共混PTB7-Th:BTR薄膜的时间分辨荧光光谱[69]; PM6:Y6、PM6:BTR:Y6(0.95:0.05:1.2)和BTR:Y6器件的(d)瞬态光电压和(e)瞬态光电流曲线; (f)从 PM6:Y6到PM6:BTR:Y6的形貌演变示意图[32]
Fig.7 (a) J-V curve and structure of devices with different film thickness[33]; (b) Photoluminescence (PL) spectra of neat BTR, PTB7-Th, and blend PTB7-Th:BTR films under 640 nm light excitation. (c) Time-resolved PL (TRPL) spectra of neat PTB7-Th, BTR, and blend PTB7-Th:BTR films obtained[69]; (d) Transient photovoltage and (e) transient photocurrent of devices based on PM6:Y6, PM6:BTR:Y6 (0.95:0.05:1.2), and BTR:Y6 blends; (f) The schematic of morphology evolution from PM6:Y6 blend to PM6:BTR:Y6 blend[32]
图8 (a) DFBT-TT6的化学结构式; (b) DFBT-TT6:PM6和DFBT-TT6-Y6共混物的DSC曲线; (c) 从 PM6:Y6到 PM6:Y6:DFBT-TT6 共混物的形貌演变示意图; (d) 器件的J-V曲线[36]
Fig.8 (a) The chemical structure of DFBT-TT6; DSC traces of DFBT-TT6:PM6 blends and DFBT-TT6:Y6 blends; (c) Schematic diagram of the morphology evolution from the PM6:Y6 blend to the PM6:Y6:DFBT-TT6 blend; (d) J-V curves of devices[36]
1 | ARMIN A, LI W, SANDBERG O J, et al. A history and perspective of non-fullerene electron acceptors for organic solar cells[J]. Adv Energy Mater, 2021, 11(15): 20003570. |
2 | 黄飞, 薄志山, 耿延候, 等. 光电高分子材料的研究进展[J]. 高分子学报, 2020, 50(10): 988-1046. |
HUANG F, BO Z S, GENG Y H, et al. Study on optoelectronic polymers: an overview and outlook[J]. Acta Polym Sin, 2020, 50(10): 988-1046. | |
3 | ZHAO F W, ZHANG H T, ZHANG R, et al. Emerging approaches in enhancing the efficiency and stability in non-fullerene organic solar cells[J]. Adv Energy Mater, 2020, 10(47): 2002746. |
4 | LU L Y, ZHENG T Y, WU Q H, et al. Recent advances in bulk heterojunction polymer solar cells[J]. Chem Rev, 2015, 115(23): 12666-12731. |
5 | CUI Y J, ZHU P P, LIAO X F, et al. Recent advances of computational chemistry in organic solar cell research[J]. J Mater Chem C, 2020, 8(45): 15920-15939. |
6 | KEARNS D, CALVIN M. Photovoltaic efect and photoconductivity in laminated organic systems[J]. J Chem Phys, 1958, 29(4): 950-951. |
7 | YUAN J, ZHANG H T, ZHANG R, et al. Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells[J]. Chem, 2020, 6(9): 2147-2161. |
8 | YUE Q H, LIU W Y, ZHU X Z. n-Type molecular photovoltaic materials: design strategies and device applications[J]. J Am Chem Soc, 2020, 142(27): 11613-11628. |
9 | LIU Q S, JIANG Y F, JIN K, et al. 18% efficiency organic solar cells[J]. Sci Bull, 2020, 65: 272-275. |
10 | KIM M, RYU S U, PARK S A, et al. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report[J]. Adv Funct Mater, 2019, 30(20): 1904545. |
11 | CUI C H, LI Y F. High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors[J]. Energy Environ Sci, 2019, 12(11): 3225-3246. |
12 | XU X P, ZHANG G J, LI Y, et al. The recent progress of wide bandgap donor polymers towards non-fullerene organic solar cells[J]. Chinese Chem Lett, 2019, 30(4): 809-825. |
13 | ZHENG Z, YAO H F, YE L, et al. PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics[J]. Mater Today, 2020, 35: 115-130. |
14 | 吕敏, 周瑞敏, 吕琨, 等. 高结晶性小分子给体材料应用于全小分子有机太阳能电池中的研究进展[J]. 化学学报, 2021, 79(3): 284-302. |
LV M, ZHOU R M, LV K, et al. Research progress of small molecule donors with high crystallinity in all small molecule organic solar cells[J]. Acta Chim Sin, 2021, 79(3): 284-302. | |
15 | DUAN C H, DING L M. The new era for organic solar cells: small molecular donors[J]. Sci Bull, 2020, 65(19):1597-1599. |
16 | TANG H, YAN C Q, HUANG J M, et al. Benzodithiophene-based small-molecule donors for next-generation all-small-molecule organic photovoltaics[J]. Matter, 2020, 3(5): 1403-1432. |
17 | STRALEY J P. Frank elastic constants of the hard-rod liquid crystal[J]. Phys Rev A, 1973, 8(4): 2181-2183. |
18 | CORNIL J, LEMAUR V, CALBERT J P, et al. Charge transport in discotic liquid crystals: a molecular scale description[J]. Adv Mater, 2002, 14(10): 726-729. |
19 | 杨琼芬, 聂汉, 陈自然, 等. 三唑和环戊烯苯并菲衍生物盘状液晶分子的电荷传输性质[J]. 物理学报, 2012, 61(6): 141-147. |
YANG Q F, NIE H, CHEN Z R, et al. Charge transport properties of triazole or cyclopentene triphenylene derivative discogen molecules[J]. Acta Phys Sin, 2012, 61(6): 141-147. | |
20 | LYU X L, XIAO A Q, SHI D, et al. Liquid crystalline polymers: discovery, development, and the future[J]. Polymer, 2020, 202: 122740. |
21 | KUMAR M, KUMAR S. Liquid crystals in photovoltaics: a new generation of organic photovoltaics[J]. Polym J, 2016, 49(1): 85-111. |
22 | 林飞. 盘状液晶在有机光电器件中的应用[J]. 黑龙江科学, 2017, 8(14): 42-43. |
LIN F. The application of discotic liquid crystal in organic optoelectronic devices[J]. Heilongjiang Sci, 2017, 8(14): 42-43. | |
23 | SCHMIDT-MENDE L, FECHTENKÖTTER A, MÜLLEN K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics[J]. Science, 2001, 293(5532): 1119-1122. |
24 | GRELL M, BRADLEY D D C, INHASEKARUN M, et al. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroiuminescence applications[J]. Adv Mater, 2010, 9(10): 798-802. |
25 | YAMABE K, GOTO H. Electrosynthesis of conducting polymers in lecithin liquid crystal reaction field[J]. Fibers Polym, 2018, 19(1): 248-253. |
26 | THOMPSON D C, TANTOL O, JALLAGEAS H, et al. Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz[J]. IEEE Trans Microwave Theory Tech, 2004, 52(4): 1343-1352. |
27 | YAO K, CHEN Y W, CHRN L, et al. Mesogens mediated self-assembly in applications of bulk heterojunction solar cells based on a conjugated polymer with narrow band gap[J]. Macromolecules, 2011, 44(8): 2698-2706. |
28 | HU D Q, YANG Q G, CHEN H Y, et al. Efficiency all-small-molecule organic solar cells with improved fill factor enabled by a fullerene additive[J]. Energy Environ Sci, 2020, 13(7): 2134-2141. |
29 | SHAN T, DING K, YU L Y, et al. Spatially orthogonal 2D sidechains optimize morphology in all-small-molecule organic solar cells[J]. Adv Funct Mater, 2021, 31(24): 2100750. |
30 | JEONG S, KWON Y, CHOI B D, et al. Improved efficiency of bulk heterojunction poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives[J]. Appl Phys Lett, 2010, 96: 183305. |
31 | YUAN K, CHEN L, CHEN Y W. Photovoltaic performance enhancement of P3HT/PCBM solar cells driven by incorporation of conjugated liquid crystalline rod-coil block copolymers[J]. J Mater Chem C, 2014, 2(19): 3835-3845. |
32 | YAN C Q, TANG H, MA R J, et al. Synergy of liquid-crystalline small-molecule and polymeric donors delivers uncommon morphology evolution and 16.6% efficiency organic photovoltaics[J]. Adv Sci, 2020, 7(15): 2000149. |
33 | ZHANG G C, ZHANG K, YIN Q W, et al. High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor[J]. J Am Chem Soc, 2017, 139(6): 2387-2395. |
34 | SUN K, XIAO Z Y, LU S R, et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics[J]. Nat Commun, 2015, 6(1): 6013. |
35 | CHEN H Y, HU D Q, YANG Q G, et al. All-small-molecule organic solar cells with an ordered liquid crystalline donor[J]. Joule, 2019, 3(12): 3034-3047. |
36 | LIAO X F, HE Q N, ZHOU G Q, et al. Regulating favorable morphology evolution by a simple liquid-crystalline small molecule enables organic solar cells with over 17% efficiency and a remarkable Jsc of 26.56 mA/cm2[J]. Chem Mater, 2020, 33(1): 430-440. |
37 | ELIAS F, CLARKE S M, PECK R, et al. Nematic order drives phase separation in polydisperse liquid crystalline polymers[J]. Macromolecules, 2000, 33(6): 2060-2068. |
38 | KIM D, KYU T. Theoretical simulation of thermally induced phase separation in a main-chain liquid-crystalline polymer solution[J]. J Polym Sci Part B: Polym Phys, 2010, 41(9): 913-926. |
39 | MIJOVIC J, SY J W. Dipole dynamics and macroscopic alignment in molecular and polymeric liquid crystals by broad-band dielectric relaxation spectroscopy[J]. Macromolecules, 2000, 33(26): 7795-7802. |
40 | GANICZ T, STAŃCZYK W. Side-chain liquid crystal polymers (SCLCP): methods and materials. an overview[J]. Materials, 2009, 2(1): 95-128. |
41 | HAN D H, TONG X, ZHAO Y, et al. Block copolymers comprising pi-conjugated and liquid crystalline subunits: induction of macroscopic nanodomain orientation[J]. Angew Chem Int Ed Engl, 2010, 49(48): 9162-9165. |
42 | WANG P S, YAO K, CHEN L, et al. Self-assembled mesogens modified fullerene for efficiently stable bulk heterojunction solar cells[J]. Sol Energy Mater Sol Cells, 2012, 97: 34-42. |
43 | CHEN L, XIE C, CHEN Y W. Self-assembled conjugated polyelectrolyte-ionic liquid crystal complex as an interlayer for polymer solar cells: achieving performance enhancement via rapid liquid crystal-induced dipole orientation[J]. Macromolecules, 2014, 47(5): 1623-1632. |
44 | ZENG D L, TAHAR-DJEBBAR I, XIAO Y M, et al. Intertwined lamello-columnar coassemblies in liquid-crystalline side-chain π-conjugated polymers: toward a new class of nanostructured supramolecular organic semiconductors[J]. Macromolecules, 2014, 47(5): 1715-1731. |
45 | KONG X F, XIA L T, ZHANG H F, et al. Synthesis and investigation on liquid crystal and optical properties of dyads based on triphenylene and perylene[J]. RSC Adv, 2017, 7(28): 17030-17037. |
46 | KONG X F, HE Z Q, ZHANG Y N, et al. A mesogenic triphenylene-perylenetriphenylene triad[J]. Org Lett, 2011, 13(4): 764-767. |
47 | CRAATS A M V D, WARMAN J M, FECHTENKŐTTER A, et al. Record charge carrier mobility in a roomtemperature discotic liquid-crystalline derivative of hexabenzocoronene[J]. Adv Mater, 1999, 11(17): 1469-1472. |
48 | LI J L, KASTLER M, PISULA W, et al. Organic bulk-heterojunction photovoltaics based on alkyl substituted discotics[J]. Adv Funct Mater, 2007, 17(14): 2528-2533. |
49 | TANG H, CHEN H Y, YAN C Q, et al. Delicate morphology control triggers 14.7% efficiency all-small-molecule organic solar cells[J]. Adv Energy Mater, 2020, 10(27): 2001076. |
50 | ZHOU J Y, WAN X J, LIU Y S, et al. Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit for high-performance solution-processed organic solar cells[J]. J Am Chem Soc, 2012, 134(39): 16345-16351. |
51 | YAO H F, YE L, ZHANG H, et al. Molecular design of benzodithiophene-based organic photovoltaic materials[J]. Chem Rev, 2016, 116(12): 7397-7457. |
52 | CHEN S H, FENG L W, JIA T, et al. High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors[J]. Sci China Chem, 2021, 64: 1192-1199. |
53 | LI C, ZHOU J D, SONG J L, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nat Energy, 2021, 6(6): 605-613. |
54 | LIU Y S, WAN X J, WANG F, et al. High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit[J]. Adv Mater, 2011, 23(45): 5387-5391. |
55 | HUO Y, ZHANG H L, ZHAN X W. Nonfullerene all-small-molecule organic solar cells[J]. ACS Energy Lett, 2019, 4(6): 1241-1250. |
56 | COLLINS S D, RAN N A, HEIBER M C, et al. Small is powerful: recent progress in solution-processed small molecule solar cells[J]. Adv Energy Mater, 2017, 7(10): 1602242. |
57 | KAN B, KAN Y Y, ZUO L J, et al. Recent progress on all-small molecule organic solar cells using small‐molecule nonfullerene acceptors[J]. InfoMat, 2021, 3(2): 175-200. |
58 | LI Z D, YAN C, XIAO L G, et al. Small molecule ternary solar cell with two synergistic electron acceptors for enhanced photovoltaic performance[J]. Org Electron, 2021, 93: 106135. |
59 | SUBBIAH J, LEE C J, MITCHELL V D, et al. Effect of side-chain modification on the active layer morphology and photovoltaic performance of liquid crystalline molecular materials[J]. ACS Appl Mater Interfaces, 2020, 13(1): 1086-1093. |
60 | LI H, WU Q, ZHOU R M, et al. Liquid‐crystalline small molecules for nonfullerene solar cells with high fill factors and power conversion efficiencies[J]. Adv Energy Mater, 2018, 9(6): 1803175. |
61 | GERAGHTY P B, LEE C, SUBBIAH J, et al. High performance p-type molecular electron donors for OPV applications via alkylthiophene catenation chromophore extension[J]. Beilstein J Org Chem, 2016, 12: 2298-2314. |
62 | BOURQUE A J, ENGMANN S, FUSTER A, et al. Morphology of a thermally stable small molecule OPV blend comprising a liquid crystalline donor and fullerene acceptor[J]. J Mater Chem A, 2019, 7(27): 16458-16471. |
63 | SHIN W, YASUDA T, WATANABE G, et al. Self-organizing mesomorphic diketopyrrolopyrrole derivatives for efficient solution-processed organic solar cells[J]. Chem Mater, 2013, 25(12): 2549-2556. |
64 | LIU J G, HAN Y C. The influence of additive property on performance of organic bulk heterojunction solar cells[J]. Polym Bull, 2012, 68(8): 2145-2174. |
65 | HUH Y H, PARK B. Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell[J]. Sci Rep, 2015, 5: 11558. |
66 | IWAN A, BOHAREWICZ B, TAZBIR I, et al. Effect of chiral photosensitive liquid crystalline dopants on the performance of organic solar cells[J]. Solid-State Electron, 2015, 104: 53-60. |
67 | JEONG S, KWON Y, CHOI B D, et al. Effects of nematic liquid crystal additives on the performance of polymer solar cells[J]. Macromol Chem Phys, 2010, 211(23): 2474-2479. |
68 | ZHOU W H, SHI J M, LV L J, et al. A mechanistic investigation of morphology evolution in P3HT-PCBM films induced by liquid crystalline molecules under external electric field[J]. Phys Chem Chem Phys, 2015, 17: 387-397. |
69 | MA X L, ZHANG F J, AN Q S, et al. A liquid crystal material as the third component for ternary polymer solar cells with an efficiency of 10.83% and enhanced stability[J]. J Mater Chem A, 2017, 5(25): 13145-13153. |
70 | YIN A, ZHANG D Y, WANG J Q, et al. Mediated non-geminate recombination in ternary organic solar cells through a liquid crystal guest donor[J]. Front Chem, 2020, 8: 21. |
71 | LIAO X F, WU F Y, CHEN L, et al. Crystallization and optical compensation by fluorinated rod liquid crystals for ternary organic solar cells[J]. J Phys Chem C, 2016, 120(33): 18462-18472. |
72 | ZHOU W H, AI Q Y, ZHANG L, et al. Crystalline and active additive for optimization morphology and absorption of narrow bandgap polymer solar cells[J]. J Polym Sci Part A: Polym Chem, 2017, 55(4): 726-733. |
[1] | 纪宇帆, 蔡锋, 于海峰. 液晶聚合物的表面形貌光调控研究进展[J]. 应用化学, 2021, 38(10): 1226-1237. |
[2] | 章晶晶, 肖鑫, 施冬健, 陈明清. 聚多巴胺在强负电型微球表面的形貌调控[J]. 应用化学, 2020, 37(7): 756-763. |
[3] | 张小梅, 李淼淼, 王琪, 江宇, 耿延候. 基于二噻吩并吡咯π桥的窄带隙非富勒烯受体材料在有机太阳能电池中的应用[J]. 应用化学, 2019, 36(9): 1023-1034. |
[4] | 赵雪妍,包守信,蔡学超,郑笑秋,赵瑞雪,李云辉,逄茂林. 微纳米金属有机骨架材料的制备及形貌调控[J]. 应用化学, 2017, 34(9): 979-995. |
[5] | 车广波, 袁晶, 苏斌, 刘春波, 赵静, 李丽丽. 无机材料在有机太阳能电池中的应用[J]. 应用化学, 2013, 30(09): 977-985. |
[6] | 赵新梅, 丘福保, 王海水. 水溶液中Mn2+对硫化锌纳米粒子形貌的调控作用[J]. 应用化学, 2012, 29(02): 191-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||