应用化学 ›› 2020, Vol. 37 ›› Issue (11): 1221-1235.DOI: 10.11944/j.issn.1000-0518.2020.11.200208
陈佳琪, 周焱, 孙敬文, 朱俊武, 汪信*, 付永胜*
收稿日期:
2020-07-10
修回日期:
2020-08-05
接受日期:
2020-08-24
出版日期:
2020-11-01
发布日期:
2020-11-04
通讯作者:
付永胜,教授; Tel/Fax:025-84315054; E-mail:fuyongsheng@163.com; 研究方向:纳米功能材料在能量存储与转化中的应用基金资助:
CHEN Jiaqi, ZHOU Yan, SUN Jingwen, ZHU Junwu, WANG Xin*, FU Yongsheng*
Received:
2020-07-10
Revised:
2020-08-05
Accepted:
2020-08-24
Published:
2020-11-01
Online:
2020-11-04
Contact:
FU Yongsheng, professor; Tel/Fax:025-84315054; E-mail:fuyongsheng@163.com; Research interests:synthesis of functional materials and the applications in energy storage and conversionSupported by:
摘要: 金属有机框架(MOFs)中空材料因其大的比表面积、低密度、较高的负载能力和良好的离子渗透性,如氢氧化物、磷化物、硫化物等纳米材料,在能源储存与转换领域有良好的发展前景。 本文主要总结了基于不同形貌MOFs中空材料的制备途径和形成机理,着重介绍了其在超级电容器、锂离子电池和电催化等方面的应用,最后论述了基于MOFs中空材料的未来发展前景和挑战。
中图分类号:
陈佳琪, 周焱, 孙敬文, 朱俊武, 汪信, 付永胜. 基于金属有机框架中空材料的研究进展[J]. 应用化学, 2020, 37(11): 1221-1235.
CHEN Jiaqi, ZHOU Yan, SUN Jingwen, ZHU Junwu, WANG Xin, FU Yongsheng. Recent Progress of Metal Organic Frameworks-Based Hollow Materials[J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1221-1235.
[1] Zheng S,Li X,Yan B,et al. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage[J]. Adv Energy Mater,2017,7(18):1602733. [2] Li X,Ma D D,Cao C,et al. Inlaying Ultrathin Bimetallic MOF Nanosheets into 3D Ordered Macroporous Hydroxide for Superior Electrocatalytic Oxygen Evolution[J]. Small,2019,15(35):1902218. [3] Hwang Y K,Hong, D Y,Chang J S,et al. Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs:Consequences for Catalysis and Metal Encapsulation[J]. Angew Chem Int Ed,2008,120(22):4212-4216. [4] Wu S,Min H,Shi W,et al. Multicenter Metal-Organic Framework-Based Ratiometric Fluorescent Sensors[J]. Adv Mater,2020,32(3):1805871. [5] Yuan H,Tao J,Li N,et al. On-chip Tailorability of Capacitive Gas Sensors Integrated with Metal-Organic Framework Films[J]. Angew Chem Int Ed,2019,58(40):14089-14094. [6] Li L,Guo L,Pu S,et al. A Calcium-Based Microporous Metal-Organic Framework for Efficient Adsorption Separation of Light Hydrocarbons[J]. Chem Eng J,2019,358:446-455. [7] Ye Y,Ma Z,Lin R B,et al. Pore Space Partition within a Metal-Organic Framework for Highly Efficient C2H2/CO2 Separation[J]. J Am Chem Soc,2019,141(9):4130-4136. [8] YU Wenting,ZHANG Hui,SUN Yuzhen,et al. Efficient Removal of Arsenic by Metal Organic Framework UTSA-74 from Aqueous Solutions[J]. Chinese J Appl Chem,2020,37(2):205-210(in Chinese). 余文婷,张慧,孙玉珍,等. 金属有机框架材料UTSA-74高效去除水溶液中的砷[J]. 应用化学,2020,37(2):205-210. [9] YU Hang,WANG Xizi,ZHU Xuya,et al. Research Progress on Metal Organic Framework Material (MIL-101) and Its Functionalized Modification Materials for Environmental Pollution[J]. Chinese J Appl Chem,2019,36(11):1221-1236(in Chinese). 于航,王茜子,朱绪娅,等. 金属有机骨架材料MIL-101及其改性材料去除环境污染物的研究进展[J]. 应用化学,2019,36(11):1221-1236. [10] Cai W,Wang J,Chu C,et al. Metal-Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery[J]. Adv Sci,2019,6(1):1801526. [11] Suresh K,Matzger A J. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal-Organic Framework(MOF)[J]. Angew Chem Int Ed,2019,131(47):16946-16950. [12] Qin J,Wang S,Wang X. Visible-Light Reduction CO2 with Dodecahedral Zeolitic Imidazolate Framework ZIF-67 as an Efficient Co-catalyst[J]. Appl Catal B,2017,209:476-482. [13] Cui W G,Zhang G Y,Hu T L,et al. Metal-Organic Framework-Based Heterogeneous Catalysts for the Conversion of C1 Chemistry:CO, CO2 and CH4[J]. Coord Chem Rev,2019,387:79-120. [14] LIU Ting,LI Jingwei,LIU Yongxin,et al. CuO Hollow Tubular Superstructure Fabricated from Cu2O@HKUST-1 Nanowire for CO Oxidation[J]. Chinese J Appl Chem,2018,35(6):687-691(in Chinese). 刘婷,李经纬,刘永鑫,等. Cu2O@HKUST-1前驱物法合成CuO中空管状超级结构及其CO催化氧化性能[J]. 应用化学,2018,35(6):687-691. [15] Cai D,Liu B,Wang D,et al. Rational Synthesis of Metal-Organic Framework Composites, Hollow Structures and Their Derived Porous Mixed Metal Oxide Hollow Structures[J]. J Mater Chem A,2016,4(1):183-192. [16] Liu B,Shioyama H,Akita T,et al. Metal-Organic Framework as a Template for Porous Carbon Synthesis[J]. J Am Chem Soc,2008,130(16):5390-5391. [17] Chen Y Z,Wang C,Wu Z Y,et al. From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis[J]. Adv Mater,2015,27(34):5010-5016. [18] Xia W,Zou R,Li A,et al. A Metal-Organic Framework Route to in Situ Encapsulation of Co@Co3O4@C Core@Bishell Nanoparticles into a Highly Ordered Porous Carbon Matrix for Oxygen Reduction[J]. Energy Environ Sci,2015,8(2):568-576. [19] Hu L,Huang Y,Zhang F,et al. CuO/Cu2O Composite Hollow Polyhedrons Fabricated from Metal-Organic Framework Templates for Lithium-Ion Battery Anodes with a Long Cycling Life[J]. Nanoscale,2013,5(10):4186-4190. [20] Cai Z X,Wang Z L,Kim J,et al. Hollow Functional Materials Derived from Metal-Organic Frameworks:Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications[J]. Adv Mater,2019,31(11):1804903. [21] Chen J,Zhang L,Bai W,et al. Unique Hollow-Concave CoMoSx Boxes with Abundant Mesoporous Structure for High-Performance Hybrid Supercapacitors[J]. Electrochim Acta,2020,337:135824. [22] Caruso F,Caruso R A,Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science,1998,282(5391):1111-1114. [23] Jiang Z,Li Z,Qin Z,et al. LDH Nanocages Synthesized with MOF Templates and Their High Performance as Supercapacitors[J]. Nanoscale,2013,5(23):11770-11775. [24] Liu D,Wan J,Pang G,et al. Hollow Metal-Organic-Framework Micro/Nanostructures and Their Derivatives:Emerging Multifunctional Materials[J]. Adv Mater,2019,31(38):1803291. [25] Guan B Y,Yu L,Lou X W. Formation of Single-Holed Cobalt/N-Doped Carbon Hollow Particles with Enhanced Electrocatalytic Activity Toward Oxygen Reduction Reaction in Alkaline Media[J]. Adv Sci,2017,4(10):1700247. [26] Lee G,Na W,Kim J,et al. Improved Electrochemical Performances of MOF-Derived Ni-Co Layered Double Hydroxide Complexes Using Distinctive Hollow-in-Hollow Structures[J]. J Mater Chem A,2019,7(29):17637-17647. [27] Sun Z,Luo Y. Fabrication of Non-Collapsed Hollow Polymeric Nanoparticles with Shell Thickness in the Order of Ten Nanometres and Anti-reflection Coatings[J]. Soft Matter,2011,7(3):871-875. [28] Yang Y,Wang F,Yang Q,et al. Hollow Metal-Organic Framework Nanospheres via Emulsion-Based Interfacial Synthesis and Their Application in Size-Selective Catalysis[J]. ACS Appl Mater Interfaces,2014,6(20):18163-18171. [29] Jeong G Y,Ricco R,Liang K,et al. Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation[J]. Chem Mater,2015,27(23):7903-7909. [30] ZHANG Lina,SU Qi,YANG Gaoling,et al. Preparation and Formation Mechanism of Hollow Ammonium Metatungstate Spheres by Spray Drying Method[J]. Powder Metall Ind,2017,27(4):12-16(in Chinese). 张丽娜,苏琪,杨高玲,等. 喷雾干燥法制备中空偏钨酸铵球及中空结构形成机理[J]. 粉末冶金工业,2017,27(4):12-16. [31] Wang T,Hu Q,Zhou M,et al. Preparation of Ultra-Fine Powders from Polysaccharide-Coated Solid Lipid Nanoparticles and Nanostructured Lipid Carriers by Innovative Nano Spray Drying Technology[J]. Int J Pharm,2016,511(1):219-222. [32] Carné-Sánchez A,Imaz I,Cano-Sarabia M,et al. A Spray-Drying Strategy for Synthesis of Nanoscale Metal-Organic Frameworks and Their Assembly into Hollow Superstructures[J]. Nat Chem,2013,5(3):203-211. [33] Alemán J V,Chadwick A V,He J,et al. Definitions of Terms Relating to the Structure and Processing of Sols, Gels, Networks, and Inorganic-Organic Hybrid Materials (IUPAC Recommendations 2007)[J]. Pure Appl Chem,2007,79(10):1801-1829. [34] Huo J,Wang L,Irran E,et al. Synthesis, Characterization and Magnetic Properties of Hollow Microspheres with Micro-Mesoporous Shells Assembled from Cobalt-Based Ferrocenyl Coordination Polymers[J]. J Colloid Interface Sci,2012,367(1):92-100. [35] Li J,Zeng H C. Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening[J]. J Am Chem Soc,2007,129(51):15839-15847. [36] Qiao R,Zhang X L,Qiu R,et al. Preparation of Magnetic Hybrid Copolymer-Cobalt Hierarchical Hollow Spheres by Localized Ostwald Ripening[J]. Chem Mater,2007,19(26):6485-6491. [37] Wang W,Dahl M,Yin Y. Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J]. Chem Mater,2013,25(8):1179-1189. [38] Zhang G,Wang W,Yu Q,et al. Facile One-Pot Synthesis of PbSe and NiSe2 Hollow Spheres: Kirkendall-Effect-Induced Growth and Related Properties[J]. Chem Mater,2009,21(5):969-974. [39] Guan C,Sumboja A,Wu H,et al. Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc-Air Batteries[J]. Adv Mater,2017,29(44):1704117. [40] Park S K,Kim J K,Kang Y C. Electrochemical Properties of Uniquely Structured Fe2O3 and FeSe2/Graphitic-Carbon Microrods Synthesized by Applying a Metal-Organic Framework[J]. Chem Eng J,2018,334:2440-2449. [41] Park G D,Cho J S,Lee J K,et al. Na-Ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls Prepared by Nanoscale Kirkendall Diffusion Process[J]. Sci Rep,2016,6(1):1-10. [42] Lee I,Choi S,Lee H J,et al. Hollow Metal-Organic Framework Microparticles Assembled via a Self-templated Formation Mechanism[J]. Cryst Growth Des,2015,15(11):5169-5173. [43] Xu X,Nosheen F,Wang X. Ni-Decorated Molybdenum Carbide Hollow Structure Derived from Carbon-Coated Metal-Organic Framework for Electrocatalytic Hydrogen Evolution Reaction[J]. Chem Mater,2016,28(17):6313-6320. [44] Wu L L,Wang Z,Long Y,et al. Multishelled NixCo3-xO4 Hollow Microspheres Derived from Bimetal-Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries[J]. Small,2017,13(17):1604270. [45] Hu H,Guan B Y,Lou X W D. Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors[J]. Chemersity,2016,1(1):102-113. [46] Guan C,Liu X,Ren W,et al. Rational Design of Metal-Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis[J]. Adv Energy Mater,2017,7(12):1602391. [47] Wu R,Wang D P,Rui X,et al. In-Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High-Performance Lithium-Ion Batteries[J]. Adv Mater,2015,27(19):3038-3044. [48] Xu W,Xie W,Wang Y. Co3O4-x-Carbon@Fe2-yCoyO3 Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction[J]. ACS Appl Mater Interfaces,2017,9(34):28642-28649. [49] Yang H,Kruger P E,Telfer S G. Metal-Organic Framework Nanocrystals as Sacrificial Templates for Hollow and Exceptionally Porous Titania and Composite Materials[J]. Inorg Chem,2015,54(19):9483-9490. [50] Yu X Y,Yu L,Wu H B,et al. Formation of Nickel Sulfide Nanoframes from Metal-Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties[J]. Angew Chem Int Ed,2015,127(18):5421-5425. [51] Zhang Q,Zhang T,Ge J,et al. Permeable Silica Shell Through Surface-Protected Etching[J]. Nano Lett,2008,8(9):2867-2871. [52] Hu M,Furukawa S,Ohtani R,et al. Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching[J]. Angew Chem Int Ed,2012,51(4):984-988. [53] Zhou Y,Zeng H C. Simultaneous Synthesis and Assembly of Noble Metal Nanoclusters with Variable Micellar Templates[J]. J Am Chem Soc,2014,136(39):13805-13817. [54] Tan Y C,Zeng H C. Defect Creation in HKUST-1 via Molecular Imprinting:Attaining Anionic Framework Property and Mesoporosity for Cation Exchange Applications[J]. Adv Funct Mater,2017,27(42):1703765. [55] Chen Y M,Yu L,Lou X W. Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage[J]. Angew Chem Int Ed,2016,55(20):5990-5993. [56] Kuo C H,Tang Y,Chou L Y,et al. Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control[J]. J Am Chem Soc,2012,134(35):14345-14348. [57] Wang J,Tang J,Ding B,et al. Self-Template-Directed Metal-Organic Frameworks Network and the Derived Honeycomb-Like Carbon Flakes via Confnement Pyrolysis[J]. Small,2018,14(14):1704461. [58] Wang X,Huang F,Rong F,et al. Unique MOF-derived Hierarchical MnO2 Nanotubes@NiCo-LDH/CoS2 Nanocage Materials as High Performance Supercapacitors[J]. J Mater Chem A,2019,7(19):12018-12028. [59] Chen H,Wang M Q,Yu Y,et al. Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-Like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors[J]. ACS Appl Mater Interfaces,2017,9(40):35040-35047. [60] Fu Y,Zhou Y,Peng Q,et al. Hollow Mesoporous Carbon Spheres Enwrapped by Small-Sized and Ultrathin Nickel Hydroxide Nanosheets for High-Performance Hybrid Supercapacitors[J]. J Power Sources,2018,402:43-52. [61] Yu X Y,Yu L,Lou X W. Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage[J]. Adv Energy Mater,2016,6(3):1501333. [62] Bai X,Liu Q,Lu Z,et al. Rational Design of Sandwiched Ni-Co Layered Double Hydroxides Hollow Nanocages/Graphene Derived from Metal-Organic Framework for Sustainable Energy Storage[J]. ACS Sustainable Chem Eng,2017,5(11):9923-9934. [63] Guo D,Song X,Tan L,et al. Metal-Organic Framework Template-Directed Fabrication of Well-Aligned Pentagon-Like Hollow Transition-Metal Sulfides as the Anode and Cathode for High-Performance Asymmetric Supercapacitors[J]. ACS Appl Mater Interfaces,2018,10(49):42621-42629. [64] He Q,Liu J,Li Z,et al. Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confned SnO2/Co Nanocubes for Highly Reversible Lithium Storage[J]. Small,2017,13(37):1701504. [65] Zhang J,Wan J,Wang J,et al. Hollow Multi-Shelled Structure with Metal-Organic-Framework-Derived Coatings for Enhanced Lithium Storage[J]. Angew Chem Int Ed,2019,58(16):5266-5271. [66] Shi Y,Wang J,Wang C,et al. Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets[J]. J Am Chem Soc,2015,137(23):7365-7370. [67] Nie Y,Li L,Wei Z. Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction[J]. Chem Soc Rev,2015,44(8):2168-2201. [68] Wang C,Jiang J,Ding T,et al. Monodisperse Ternary NiCoP Nanostructures as a Bifunctional Electrocatalyst for both Hydrogen and Oxygen Evolution Reactions with Excellent Performance[J]. Adv Mater Interfaces,2016,3(4):1500454. [69] Bai Y,Zhang H,Feng Y,et al. Sandwich-Like CoP/C Nanocomposites as Efficient and Stable Oxygen Evolution Catalysts[J]. J Mater Chem A,2016,4(23):9072-9079. [70] Hu E,Feng Y,Nai J,et al. Construction of Hierarchical Ni-Co-P Hollow Nanobricks with Oriented Nanosheets for Efficient Overall Water Splitting[J]. Energy Environ Sci,2018,11(4):872-880. [71] Deng D,Yu L,Chen X,et al. Iron Encapsulated within Pod-Like Carbon Nanotubes for Oxygen Reduction Reaction[J]. Angew Chem Int Ed,2013,125(1):389-393. [72] Guan B Y,Lu Y,Wang Y,et al. Porous Iron-Cobalt Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal-Organic Framework Hybrids for Oxygen Reduction[J]. Adv Funct Mater,2018,28(10):1706738. [73] Hu H,Han L,Yu M,et al. Metal-Organic-Framework-Engaged Formation of Co Nanoparticle-Embedded Carbon@Co9S8 Double-Shelled Nanocages for Efficient Oxygen Reduction[J]. Energy Environ Sci,2016,9(1):107-111. [74] Yu Z,Bai Y,Zhang N,et al. Metal-Organic Framework-Derived Heterostructured ZnCo2O4@FeOOH Hollow Polyhedrons for Oxygen Evolution Reaction[J]. J Alloys Compd,2020,832:155067. [75] Wang X,Li F,Li W,et al. Hollow Bimetallic Cobalt-Based Selenide Polyhedrons Derived from Metal-Organic Framework:An Efficient Bifunctional Electrocatalyst for Overall Water Splitting[J]. J Mater Chem A,2017,5(34):17982-17989. [76] Liu Y,Hua X,Xiao C,et al. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion to Trigger Efficient Hydrogen Evolution[J]. J Am Chem Soc,2016,138(15):5087-5092. [77] Lin Y,Sun K,Liu S,et al. Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor[J]. Adv Energy Mater,2019,9(36):1901213. [78] Shi Y,Zhang B. Recent Advances in Transition Metal Phosphide Nanomaterials:Synthesis and Applications in Hydrogen Evolution Reaction[J]. Chem Soc Rev,2016,45(6):1529-1541. [79] Zhang Y,Wang T,Wang Y,et al. Metal Organic Frameworks Derived Hierarchical Hollow Ni0.85Se|P Composites for High-Performance Hybrid Supercapacitor and Efficient Hydrogen Evolution[J]. Electrochim Acta,2019,303:94-104. |
[1] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[2] | 陈兵帅, 卓海涛, 黄书, 陈少军. 高性能硅基负极聚合物粘结剂的研究进展[J]. 应用化学, 2023, 40(5): 625-639. |
[3] | 雷学博, 刘慧景, 丁赫宇, 申国栋, 孙润军. 用于降解印染废水中有机污染物的光催化剂的研究进展[J]. 应用化学, 2023, 40(5): 681-696. |
[4] | 胡方正, 高兴, 刘雷, 袁天恒, 曹宁, 李凯, 王亚涛, 李建华, 连慧琴, 汪晓东, 崔秀国. 锂离子电池黑磷负极的储能优势及其优化的研究进展[J]. 应用化学, 2023, 40(4): 571-582. |
[5] | 王华宇, 张超, 陈柯铭, 葛明. 金属-有机框架MIL-88A(Fe)及其复合材料在水处理中的研究进展[J]. 应用化学, 2023, 40(2): 155-168. |
[6] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[7] | 林锦, 王芳珠, 吕灵灵. 工业原料制备大孔拟薄水铝石及在异佛尔酮选择性加氢中的应用[J]. 应用化学, 2023, 40(1): 79-90. |
[8] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[9] | 王恩通, 杨林芳. 高比容量锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2的制备及性能[J]. 应用化学, 2022, 39(8): 1209-1215. |
[10] | 杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261. |
[11] | 邵姗, 张剑, 邓凯强, 杨杰, 杨绍明. 镍钴双金属-卟啉有机框架复合纳米材料构建的无酶传感器检测多巴胺[J]. 应用化学, 2022, 39(7): 1098-1107. |
[12] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[13] | 张梅伦, 凌红冉, 孙在春, 梅炳初, 李威威. 氟化镁钡粉体制备方法研究进展[J]. 应用化学, 2022, 39(6): 900-911. |
[14] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[15] | 宋林虎, 李世友, 王洁, 张晶晶, 张宁霜, 赵冬妮, 徐菲. 锂离子电池电解液除酸除水添加剂的研究进展[J]. 应用化学, 2022, 39(5): 697-706. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||