[1] | Price R. A Genealogy of the Chemical Weapons Taboo[J]. Int Org,1995,49(1):73-103. | [2] | Sciuto A M,Stotts R R,Hurt H H. Efficacy of Ibuprofen and Pentoxifylline in the Treatment of Phosgene-induced Acute Lung Injury[J]. Appl Toxicol,1996,16(5):381-384. | [3] | Noort D,Hulst A G,Fidder A,et al.In Vitro Adduct Formation of Phosgene with Albumin and Hemoglobin in Human Blood[J]. Chem Res Toxicol,2000,13(8):719-726. | [4] | Bast C B, Glass-Mattie D F. Handbook of Toxicology of Chemical Warfare Agents[M]. 2nd Ed. Boston:Academic Press,2015:327-335. | [5] | Andersen L L. Influence of Psychosocial Work Environment on Adherence to Workplace Exercise[J]. J Occup Environ Med,2011,53:182-184. | [6] | Eckert H,Forster B. Triphosgene, a Crystalline Phosgene Substitute[J]. Angew Chem Int Ed,1987,26(9):894-895. | [7] | Ehrich M. Organophosphates, in Encyclopedia of Toxicology[M]. San Diego:Academic Press,1998:467-471. | [8] | Gupta R. Handbook of Toxicology of Chemical Warfare Agents[M], London:Academic Press,2009. | [9] | Marrs T C. Organophosphate Poisoning[J]. Pharmacol Ther,1993,58:51-66. | [10] | Sidell F R,Borak J. Chemical Warfare Agents:II.Nerve Agents[J]. Ann Emerg Med,1992,21(7):865-871. | [11] | Hill Jr H H,Martin S J. Conventional Analytical Methods for Chemical Warfare Agents[J]. Pure Appl Chem,2002,74(12):2281-2291. | [12] | Brown K. Up in the Air[J]. Science,2004,305(5688):1228-1229. | [13] | Eubanks L M,Dickerson T J,Janda K D. Technological Advancements for the Detection of and Protection Against Biological and Chemical Warfare Agents[J]. Chem Soc Rev,2007,36(3):458-470. | [14] | Yao J,Fu Y,Xu W,et al.Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection[J]. Anal Chem,2016,88(4):2497-2501. | [15] | Kim K,Tsay O G,Atwood D A,et al.Destruction and Detection of Chemical Warfare Agents[J]. Chem Rev,2011,111(9):5345-5430. | [16] | Wu W,Dong J,Wang X,et al.Fluorogenic and Chromogenic Probe for Rapid Detection of a Nerve Agent Simulant DCP[J]. Analyst,2012,137(14):3224-3226. | [17] | Yin J,Hu Y,Yoon J. Fluorescent Probes and Bioimaging:Alkali Metals, Alkaline Earth Metals and pH[J]. Chem Soc Rev,2015,44(14):4619-4644. | [18] | Wu D,Chen L,Lee W,et al.Recent Progress in the Development of Organic Dye Based Near-Infrared Fluorescence Probes for Metal Ions[J]. Chem Coord Rev,2017,DOI: | [19] | Xu Z,Chen J,Hu L L,et al.Recent Advances Formaldehyde-responsive Fluorescent Probes[J]. Chinese Chem Lett,2017,DOI: | [20] | Zhou X,Lee S,Xu Z,et al.Recent Progress on the Development of Chemosensors for Gases[J]. Chem Rev,2015,115(15):7944-8000. | [21] | Zhang H,Rudkevich D M. A FRET Approach to Phosgene Detection[J]. Chem Commun,2007,12(12):1238-1239. | [22] | Wu X,Wu Z,Yang Y,et al.A highly Sensitive Fluorogenic Chemodosimeter for Rapid Visual Detection of Phosgene[J]. Chem Commun,2012,48(13):1895-1897. | [23] | Zhang Y,Peng A,Jie X,et al.A BODIPY-Based Fluorescent Probe for Detection of Subnanomolar Phosgene with Rapid Response and High Selectivity[J]. ACS Appl Mater Interfaces,2017,9(16):13920-13927. | [24] | Hu Y,Chen L,Jung H,et al.Effective Strategy for Colorimetric and Fluorescence Sensing of Phosgene Based on Small Organic Dyes and Nanofiber Platforms[J]. ACS Appl Mater Interfaces,2016,8(34):22246-22252. | [25] | Zhou X,Zeng Y,Chen L,et al.A Fluorescent Sensor for Dual-Channel Discrimination Between Phosgene and a Nerve-Gas Mimic[J]. Angew Chem Int Ed,2016,55(15):4729-4733. | [26] | Xia H C,Xu X H,Song Q H. Fluorescent Chemosensor for Selective Detection of Phosgene in Solutions and in Gas Phase[J]. ACS Sens,2017,2(1):178-182. | [27] | Wang S L,Zhong L,Song Q H. A Ratiometric Fluorescent Chemosensor for Selective and Visual Detection of Phosgene in Solutions and in Gas Phase[J]. Chem Commun,2017,53(9):1530-1533. | [28] | Xia H C,Xu X H,Song Q H. BODIPY-based Fluorescent Sensor for the Recognization of Phosgene in Solutions and in Gas Phase[J]. Anal Chem,2017,89(7):4192-4197. | [29] | Kundu P,Hwang K C. Rational Design of Fluorescent Phosgene Sensors[J]. Anal Chem,2012,84(10):4594-4597. | [30] | Xuan W,Cao Y,Zhou J,et al.A FRET-based Ratiometric Fluorescent and Colorimetric Probe for the Facile Detection of Organophosphonate Nerve Agent Mimic DCP[J]. Chem Commun,2013,49(89):10474-10476. | [31] | Jang Y J,Muralea D P,Churchill D G. Novel Reversible and Selective Nerve Agent Simulant Detection in Conjunction with Superoxide “Turn-On” Probing[J]. Analyst,2014,139(7):1614-1617. | [32] | Barba-Bon A,Costero A M,Gil S,et al.Selective Chromo-Fluorogenic Detection of DFP(a Sarin and Soman mimic) and DCNP(a Tabun Mimic) with a Unique Probe Based on a Boron Dipyrromethene(BODIPY) Dye[J]. Org Biomol Chem,2014,12(43):8745-8751. | [33] | Singh V V,Kaufmann K,Orozco J,et al.Micromotor-Based On-Off Fluorescence Detection of Sarin and Soman Simulants[J]. Chem Commun,2015,51(56):11190-11193. | [34] | Wu X,Wu Z,Han S. Chromogenic and Fluorogenic Detection of a Nerve Agent Simulant with a Rhodamine-Deoxylactam Based Sensor[J]. Chem Commun,2011,47(41):11468-11470. | [35] | Wu W,Dong J,Wang X,et al.Fluorogenic and Chromogenic Probe for Rapid Detection of a Nerve Agent Simulant DCP[J]. Analyst,2012,137(14):3224-3226. | [36] | Barba-Bon A,Costero A M,Gil S,et al.Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes[J]. Chem Eur J,2014,20(21):6339-6347. | [37] | Hu X X,Su Y T,Ma Y W,et al.A Near Infrared Colorimetric and Fluorometric Probe for Organophosphorus Nerve Agent Mimics by Intramolecular Amidation[J]. Chem Commun,2015,51(82):15118-15121. | [38] | Jang Y J,Mulay S V,Kim Y,et al.Nerve Agent Simulant Diethyl Chlorophosphate Detection Using a Cyclization Reaction Approach with High Stokes Shift System[J]. New J Chem,2017,41(4):1653-1658. | [39] | Lee H,Kim H J. Novel Fluorescent Probe for the Selective Detection of Organophosphorous Nerve Agents Through a Cascade Reaction from Oxime to Nitrile via Isoxazole[J]. Tetrahedron,2014,70(18):2966-2970. | [40] | Jang Y J,Tsay O G,Murale D P,et al.Novel and Selective Detection of Tabun Mimics[J]. Chem Commun,2014,50(56):7531-7534. | [41] | Kim Y,Jang Y J,Mulay S V,et al.Fluorescent Sensing of a Nerve Agent Simulant with Dual Emission over Wide pH Range in Aqueous Solution[J]. Chem Eur J,2017,23(32):7785-7790. | [42] | Kim Y,Jang Y J,Lee D,et al.Real Nerve Agent Study Assessing Pyridyl Reactivity:Selective Fluorogenic and Colorimetric Detection of Soman and Simulant[J]. Sens Actuators B,2017,238:145-149. | [43] | Huang S,Wu Y,Zeng F,et al.Handy Ratiometric Detection of Gaseous Nerve Agents with AIE-Fluorophore-Based Solid Test Strips[J]. J Mater Chem C,2016,4(42):10105-10110. | [44] | Cai Y C,Li C,Song Q H. Fluorescent Chemosensors with Varying Degrees of Intramolecular Charge Transfer for Detection of a Nerve Agent Mimic in Solutions and in Vapor[J]. ACS Sens,2017,2(6):834-841. | [45] | So H S,Angupillai S,Son Y A. Prompt Liquid-Phase Visual Detection and Low-Cost Vapor-Phase Detection of DCP, a Chemical Warfare Agent Mimic[J]. Sens Actuators B,2016,235:447-456. | [46] | Mahapatra A K,Maiti K,Manna S K,et al.A Cyclization-Induced Emission Enhancement(CIEE)-Based Ratiometric Fluorogenic and Chromogenic Probe for the Facile Detection of a Nerve Agent Simulant DCP[J]. Chem Commun,2015,51(47):9729-9732. | [47] | Goswami S,Dasa S,Aicha K. Fluorescent Chemodosimeter Based on Spirobenzopyran for Organophosphorus Nerve Agent Mimics(DCP)[J]. RSC Adv,2015,5(37):28996-29001. | [48] | Ali S S,Gangopadhyay A,Maiti K,et al.A Chromogenic and Ratiometric Fluorogenic Probe for Rapid Detection of a Nerve Agent Simulant DCP Based on a Hybrid Hydroxynaphthalene-Hemicyanine Dye[J]. Org Biomol Chem,2017,15(28):5959-5967. | [49] | Kumar V,Rana H. Chromogenic and Fluorogenic Detection and Discrimination of Nerve Agents Tabun and Vx[J]. Chem Commun,2015,51(92):16490-16493. | [50] | Sun X,Reuther J F,Phillips S T,et al.Coupling Activity-Based Detection, Target Amplification, Colorimetric and Fluorometric Signal Amplification, for Quantitative Chemosensing of Fluoride Generated from Nerve Agents[J]. Chem Eur J,2017,23(16):3903-3909. | [51] | Sun X,Dahlhauser S D,Anslyn E V. New Autoinductive Cascade for the Optical Sensing of Fluoride:Application in the Detection of Phosphoryl Fluoride Nerve Agents[J]. J Am Chem Soc,2017,139(13):4635-4638. | [52] | Sun X,Anslyn E V. An Auto-Inductive Cascade for the Optical Sensing of Thiols in Aqueous Media:Application in the Detection of a VX Nerve Agent Mimic[J]. Angew Chem Int Ed,2017,56(32):9522-9526. |
|