
应用化学 ›› 2025, Vol. 42 ›› Issue (3): 313-320.DOI: 10.19894/j.issn.1000-0518.240321
• 综合评述 • 上一篇
李振1,2, 汤紫霞1,2, 张洋洋1, 曹钰晨1, 付培可1, 吕美1, 王利涛1,2()
收稿日期:
2024-10-16
接受日期:
2025-03-04
出版日期:
2025-03-01
发布日期:
2025-04-11
通讯作者:
王利涛
基金资助:
Zhen LI1,2, Zi-Xia TANG1,2, Yang-Yang ZHANG1, Yu-Chen CAO1, Pei-Ke FU1, Mei LYU1, Li-Tao WANG1,2()
Received:
2024-10-16
Accepted:
2025-03-04
Published:
2025-03-01
Online:
2025-04-11
Contact:
Li-Tao WANG
About author:
wanglilvtao@163.comSupported by:
摘要:
共价有机框架(COFs)具有高稳定性、易修饰性和结构可设计性等优点,被视为新型高效液相色谱固定相的有力选择。 尽管COFs用作色谱固定相的应用尚在初始阶段,但开发新型固定相材料,以实现高效的分离,依旧是分离科学领域亟待攻克的重要难题。 COFs与硅胶(SiO2)的复合材料(COFs-SiO2)结合了COFs孔道可调节的特性与SiO2的强机械稳定性和耐压性,在色谱分离领域展现出巨大潜力。 本文综述了COFs作为固定相材料的优势,并详细介绍了COFs-SiO2复合材料通过三嗪环、亚胺键、腙键和硼键等不同连接方式的设计及其在手性化合物、异构体分离以及复杂样品(市售药品、环境水样)中的应用。 进一步展望了COFs-SiO2在高效液相色谱中的应用前景。
中图分类号:
李振, 汤紫霞, 张洋洋, 曹钰晨, 付培可, 吕美, 王利涛. 共价有机框架修饰硅胶复合材料在高效液相色谱中的研究进展[J]. 应用化学, 2025, 42(3): 313-320.
Zhen LI, Zi-Xia TANG, Yang-Yang ZHANG, Yu-Chen CAO, Pei-Ke FU, Mei LYU, Li-Tao WANG. Research Progress of Covalent Organic Framework Modified Silica Gel Composites in High Performance Liquid Chromatography[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 313-320.
Stationary phase | Synthesis methods | Separated substance | Separation mode | Aperture/nm | specific surface area/(m2·g-1) | Connection type | Ref. |
---|---|---|---|---|---|---|---|
CTF-SiO2 | Quiescence in room-temperature synthesis | Monosubstituted benzene, PAHs, phenol, aniline | RPLC | 359 | Triazine | [ | |
CC-MP CCTF@SiO2 | In-situ growth strategy | Alcohols, phenols, amines, ketones, and organic acid | NPLC | Triazine | [ | ||
TAPT-DHTA-COF@SiO2 | In-situ growth strategy | Hydrophobic benzophenone, steroid hormones, phthalates, water-soluble nucleosides/bases | RPLC/HILIC | 9.54 | 154.78 | Imine | [ |
IL-COF@SiO2 | Green synthesis strategy | Alkylphenol, steroid hormones, bisphenols, nucleosides/bases, b vitamins, sulfonamides. | RPLC/HILIC | Imine | [ | ||
BTAMTH@SiO2 | One-pot synthetic method | Nitrotoluene, nitrochlorobenzene, beta-cypermethrin, metconazole. | RPLC/NPLC | 1.41 | 723 | Hydrazone | [ |
SiO2@COF5 | In-situ growth strategy | Alkyl benzenes, PAHs, anilines, acetophenones, benzaldehydes and isomers of hydroxyacetophenone | RPLC | 7 | 373.93 | Boronic ester | [ |
表1 COFs 固定相的信息及分离物质
Table 1 COFs stationary phase information and separated substances
Stationary phase | Synthesis methods | Separated substance | Separation mode | Aperture/nm | specific surface area/(m2·g-1) | Connection type | Ref. |
---|---|---|---|---|---|---|---|
CTF-SiO2 | Quiescence in room-temperature synthesis | Monosubstituted benzene, PAHs, phenol, aniline | RPLC | 359 | Triazine | [ | |
CC-MP CCTF@SiO2 | In-situ growth strategy | Alcohols, phenols, amines, ketones, and organic acid | NPLC | Triazine | [ | ||
TAPT-DHTA-COF@SiO2 | In-situ growth strategy | Hydrophobic benzophenone, steroid hormones, phthalates, water-soluble nucleosides/bases | RPLC/HILIC | 9.54 | 154.78 | Imine | [ |
IL-COF@SiO2 | Green synthesis strategy | Alkylphenol, steroid hormones, bisphenols, nucleosides/bases, b vitamins, sulfonamides. | RPLC/HILIC | Imine | [ | ||
BTAMTH@SiO2 | One-pot synthetic method | Nitrotoluene, nitrochlorobenzene, beta-cypermethrin, metconazole. | RPLC/NPLC | 1.41 | 723 | Hydrazone | [ |
SiO2@COF5 | In-situ growth strategy | Alkyl benzenes, PAHs, anilines, acetophenones, benzaldehydes and isomers of hydroxyacetophenone | RPLC | 7 | 373.93 | Boronic ester | [ |
Stationary phase | Synthesis methods | Separated substance | Separation mode | Application classification | Ref. |
---|---|---|---|---|---|
(S)-DTP-COF@SiO2 | In-situ growth strategy | 1-phenylethylamine, 1-(4-fuorophenyl) ethanol, 1-phenyl-1-pentanol, mandelic acid, styrene oxide, 4-chloroben-zhydrol, 4-phenyl-2-butanol, styrene oxide, 1,1′-bi-2-naphthol, and Dl-benzoin | RPLC/NPLC | Enantiomers | [ |
COF@CD@SiO2 | One-pot synthetic method | 2-phenylpropionic acid, n-acetyl-l- phenylalanine, dopa, methyldopa, menthol and styrene oxide | HILIC | Enantiomers | [ |
NPS@TPB-DMTP | In-situ polymerization | benzenediol, triphenyl, p-phenylenediamine, aminophenol, nitroaniline and nitrophenol | RPLC | Isomers | [ |
SiO2@COF | One-pot synthetic method | sulfadiazine tablets | RPLC | Complex sample | [ |
SiO2@rLZU1 | In-situ growth strategy | coking wastewater and fullerenes (C60 and C70) | RPLC/HILIC | Complex sample | [ |
CMON/CCOF@SiO2 | In-situ polymerization | environmental endocrine disruptors in water samples | RPLC | Complex sample | [ |
表2 COFs固定相的应用分类及分离物质
Table 2 Application classification and separation substances of COFs stationary phase.
Stationary phase | Synthesis methods | Separated substance | Separation mode | Application classification | Ref. |
---|---|---|---|---|---|
(S)-DTP-COF@SiO2 | In-situ growth strategy | 1-phenylethylamine, 1-(4-fuorophenyl) ethanol, 1-phenyl-1-pentanol, mandelic acid, styrene oxide, 4-chloroben-zhydrol, 4-phenyl-2-butanol, styrene oxide, 1,1′-bi-2-naphthol, and Dl-benzoin | RPLC/NPLC | Enantiomers | [ |
COF@CD@SiO2 | One-pot synthetic method | 2-phenylpropionic acid, n-acetyl-l- phenylalanine, dopa, methyldopa, menthol and styrene oxide | HILIC | Enantiomers | [ |
NPS@TPB-DMTP | In-situ polymerization | benzenediol, triphenyl, p-phenylenediamine, aminophenol, nitroaniline and nitrophenol | RPLC | Isomers | [ |
SiO2@COF | One-pot synthetic method | sulfadiazine tablets | RPLC | Complex sample | [ |
SiO2@rLZU1 | In-situ growth strategy | coking wastewater and fullerenes (C60 and C70) | RPLC/HILIC | Complex sample | [ |
CMON/CCOF@SiO2 | In-situ polymerization | environmental endocrine disruptors in water samples | RPLC | Complex sample | [ |
1 | JAEKEL A, LEGELLI M, WIRTZ M, et al. Selectivity optimization in liquid chromatography via stationary phase tuning[J]. J Sep Sci, 2023, 46(20): e2300204. |
2 | FU D T, ZHONG L L, XU J, et al. Hydrazone-functionalized nanoscale covalent organic frameworks as a nanocarrier for pH-responsive drug delivery enhanced anticancer activity[J]. RSC Adv, 2024, 14(29): 20799-20808. |
3 | 韩周洋, 刘昌威, 孙丹. 高效液相色谱法测定环境空气醛酮类化合物的研究及应用[J]. 辽宁化工, 2024, 53(1): 158-161. |
HAN Z Y, LIU C W, SUN D. Study and application of determination of acarbonyl compounds in ambient air by high performance liquid chromatography[J]. Liaoning Chem Ind, 2024, 53(1): 158-161. | |
4 | HAN X X, ZHAO R J, TIAN Y, et al. Simple high-performance liquid chromatography-ultraviolet method for simultaneous separation and detection of 14 bisphenol pollutants in building materials[J]. J Sep Sci, 2023, 46(11): 2300006. |
5 | 田毅峰, 李先国, 沙春洁, 等. C18反相硅胶键合相的制备与性能评价[J]. 化学试剂, 2007, 29(1): 12-14. |
TIAN Y F, LI X G, SHA C J, et al. Preparation and characterization of C18 bonded phase[J]. Chem Reag, 2007, 29(1): 12-14. | |
6 | SEOG D J H, KIEN N V, RYOO J J. Amino alcohol-derived chiral stationary phases[J]. Chirality, 2023, 35(10): 739-752. |
7 | WANG L T, LI Z, WANG Y, et al. A singular chromatographic column breakthrough: achieving full polarity range separations with the epoxy propanol molecular cage bonded silica stationary phase[J]. J Chromatogr A, 2024, 1730: 465098. |
8 | WANG L T, HAN S Q, YU H Y, et al. Porous organic cage-embedded C10-modified silica as HPLC stationary phase and its multiple separation functions[J]. Molecules, 2022, 27(24): 8895. |
9 | SUN S S, WANG L T, WANG J S, et al. Homochiral organic molecular cage RCC3-R-modified silica as a new multimodal and multifunctional stationary phase for high-performance liquid chromatography[J]. J Sep Sci, 2023, 46(16): e2200935. |
10 | LIU S L, HUI J J, LI H D, et al. Efficient removal of diclofenac sodium from aqueous environments by magnetic ionic covalent organic frameworks based on polydopamine: adsorption performance and mechanism study[J]. Sep Purif Technol, 2025, 354: 129020. |
11 | WANG J L, LUO C, WANG W T, et al. Efficient capture of palladium from nuclear wastewater by the sulfide and thiol modified covalent organic framework[J]. Colloid Surface A, 2024, 698: 134601. |
12 | DU L L, LI X, LU X F, et al. The synthesis strategies of covalent organic frameworks and advances in their application for adsorption of heavy metal and radionuclide[J]. Sci Total Environ, 2024, 939: 173478. |
13 | HUANG L Y, LI W D, WEI F C, et al. Hierarchical porous covalent organic framework nanosheets with adjustable large Mesopores[J]. Chem, 2024, 10(10): 3100-3113. |
14 | RAN X Y, GUO P, LIU C F, et al. Chiral covalent-organic framework MDI-β-CD-modified COF@SiO2 core-shell composite for HPLC enantioseparation[J]. Molecules, 2023, 28(2): 662. |
15 | WAN M J, ZHENG Y C, DAI X M, et al. Click chemistry for the preparation of β-cyclodextrin grafting uniform spherical covalent organic framework materials for chiral separation[J]. Chem Mater, 2023, 35(2): 609-616. |
16 | ZHANG Y, LU Y R, LIU C, et al. Room temperature synthesis of a chiral covalent organic framework core-shell composite for high-performance liquid chromatography enantioseparation[J]. J Sep Sci, 2024, 47(15): 2400140. |
17 | 初楚, 倪彩玲, 秦元成, 等. 共价有机骨架的设计、合成与应用进展[J]. 南昌航空大学学报(自然科学版), 2022, 36(3): 38-65. |
CHU C, NI C L, QIN Y C, et al. Devolopment of covalent organic framework:design,synthesis and appucations[J]. J Nanchang Hangkong Univ (Nat Sci), 2022, 36(3): 38-65. | |
18 | QIAN C, TEO W L, GAO Q, et al. Polycrystalline covalent organic frameworks[J]. Mater Today, 2023, 71: 91-107. |
19 | VARDHAN H, RUMMER G, DENG A, et al. Large-scale synthesis of covalent organic frameworks: challenges and opportunities[J]. Membranes, 2023, 13(8): 696. |
20 | JIANG Q, XIN X B, ZHANG S W, et al. Advances of covalent organic frameworks as the stationary phases for liquid chromatography[J]. Trac-Trends Anal Chem, 2024, 174: 117680. |
21 | KE Z P, CHENG Y Y, YANG S Y, et al. Modification of COF-108 via impregnation/functionalization and Li-doping for hydrogen storage at ambient temperature[J]. Int J Hydrogen Energy, 2017, 42(16): 11461-11468. |
22 | DING H M, MAL A, WANG C. Tailored covalent organic frameworks by post-synthetic modification[J]. Mater Chem Front, 2020, 4(1): 113-127. |
23 | KUHN P, ANTONIETTI M, THOMAS A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew Chem Int Ed Engl, 2008, 47(18): 3450-3453. |
24 | ZHAO W J, HU K, HU C C, et al. Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography[J]. J Chromatogr A, 2017, 1487: 83-88. |
25 | LIU C, GUO P, LU Y R, et al. In situ growth preparation of a new chiral covalent triazine framework core-shell microspheres used for HPLC enantioseparation[J]. Microchim Acta, 2023, 190(6): 238. |
26 | WEI W J, LONG H Y, LIU Y J, et al. Preparation and application of a novel imine-linked covalent organic framework@silica composite for reversed-phase and hydrophilic interaction chromatographic separations[J]. Anal Chim Acta, 2023, 1276: 341635. |
27 | LIU Y F, SHANG S Q, WEI W J, et al. Ionic liquid/covalent organic framework/silica composite material: green synthesis and chromatographic evaluation[J]. Anal Chim Acta, 2023, 1283: 341992. |
28 | ZHANG K, CAI S L, YAN Y L, et al. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography[J]. J Chromatogr A, 2017, 1519: 100-109. |
29 | WANG S L, ZHANG L Y, XIAO R L, et al. Fabrication of SiO2@COF5 microspheres and their application in high performance liquid chromatography[J]. Anal Methods, 2018, 10(17): 1968-1976. |
30 | URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. J Am Chem Soc, 2009, 131(13): 4570-4571. |
31 | XU H, GAO J, JIANG D L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts[J]. Nat Chem, 2015, 7(11): 905-912. |
32 | URIBE-ROMO F J, DOONAN C J, FURUKAWA H, et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. J Am Chem Soc, 2011, 133(30): 11478-11481. |
33 | VARGESSON N, STEPHENS T. Thalidomide: history, withdrawal, renaissance, and safety concerns[J]. Expert Opin Drug Saf, 2021, 20(12): 1455-1457. |
34 | CERAMELLA J, IACOPETTA D, FRANCHINI A, et al. A look at the importance of chirality in drug activity: some significative examples[J]. Appl Sci-Basel, 2022, 12(21): 10909. |
35 | PAPP L A, SZABO Z I, HANCU G, et al. Comprehensive review on chiral stationary phases in single-column simultaneous chiral-achiral HPLC separation methods[J]. Molecules, 2024, 29(6): 1346. |
36 | ZHOU H M, LIU C, ZHANG Y, et al. Asymmetric catalytic synthesis of chiral covalent organic framework composite(S)-DTP-COF@SiO2 for HPLC enantioseparations by normal-phase and reversed-phase chromatographic modes[J]. Microchim Acta, 2024, 191(8): 445. |
37 | ZHENG Y, WAN M, ZHOU J, et al. One-pot method for the synthesis of β-cyclodextrin and covalent organic framework functionalized chiral stationary phase with mixed-mode retention mechanism[J]. J Chromatogr A, 2022, 1662: 462731. |
38 | XIE M C, QUAN K J, LI H, et al. Non-porous silica support covalent organic frameworks as stationary phases for liquid chromatography[J]. Chem Commun, 2023, 59(3): 314-317. |
39 | ZHENG Y C, WAN M J, ZHOU J Q, et al. Striped covalent organic frameworks modified stationary phase for mixed mode chromatography[J]. J Chromatogr A, 2021, 1649: 462186. |
40 | XU S, LI Z X, ZHANG L Y, et al. In situ growth of COF-rLZU1 on the surface of silica sphere as stationary phase for high performance liquid chromatography[J]. Talanta, 2021, 221: 121612. |
41 | LIU Y F, HU J, ZHOU Y D, et al. Chiral microporous organic network/covalent organic framework/silica composites: powerful and versatile chromatographic separation materials[J]. Sep Purif Technol, 2025, 355: 129701. |
[1] | 谢雨佳, 谢鑫淋, 裴维兵, 李奇, 郭家铭, 袁尧, 刘宇. 耐高温溶液型聚芳醚酮上浆剂的制备及其应用[J]. 应用化学, 2025, 42(1): 78-85. |
[2] | 王婕, 王书航, 周绍岩, 梁潇云, 徐可进. 连朴饮基准样品高效液相色谱指纹图谱建立及化学成分鉴定[J]. 应用化学, 2024, 41(6): 813-829. |
[3] | 王超, 彭永军, 朱波, 韩毅. 碳化硼/铅/聚乙烯复合材料的热稳定性及屏蔽性能[J]. 应用化学, 2024, 41(6): 890-898. |
[4] | 高军鹏, 王婷婷, 许虎, 蒋诗才, 邓华, 张宝艳. 耐空间辐射环氧树脂基碳纤维增强复合材料制备与性能[J]. 应用化学, 2024, 41(6): 899-905. |
[5] | 祖艳丽, 李婉璐, 刘佳, 林珊, 李森, 贺春英. 二硒化钼/石墨烯复合材料的非线性光学性质[J]. 应用化学, 2024, 41(5): 659-667. |
[6] | 胡轩, 吴同川, 艾鑫丹, 何兴悦, 徐弘康, 郑飞, 越皓, 戴雨霖. 液质联用结合网络药理学探究少腹逐瘀汤抗宫颈癌活性机理[J]. 应用化学, 2024, 41(5): 687-702. |
[7] | 李欣, 李念, 胡健楠, 顾晶业, 段瑶, 郭亦男, 朴东, 刘子婷, 皮子凤, 越皓. 基于超高效液相色谱-四极杆-飞行时间串联质谱联用技术的荆莲核消方化学成分分析[J]. 应用化学, 2024, 41(5): 712-727. |
[8] | 朴禹涵, 马丽婷, 罗静, 刘书晗, 白若冰, 张若妍, 越皓, 郑飞. 通腑泻下颗粒指纹图谱的建立及7种成分的定量分析[J]. 应用化学, 2024, 41(4): 577-585. |
[9] | 谢东, 胡健楠, 李念, 杨桔, 黄青, 皮子凤, 郑飞, 戴雨霖, 越皓. 基于UPLC-Q TOF-MSE技术的藤黄健骨丸指纹图谱建立及共有峰鉴定[J]. 应用化学, 2024, 41(3): 437-444. |
[10] | 王昊, 王熙宇, 熊英, 崔俊硕. 萘基反应型石墨烯分散剂及其在增强聚乙烯醇复合薄膜中的应用[J]. 应用化学, 2024, 41(12): 1712-1720. |
[11] | 杨晓莹, 张保华, 蓝叶滢, 张玉微. 氧化还原液流电池碳基复合双极板材料研究进展[J]. 应用化学, 2024, 41(10): 1381-1398. |
[12] | 王超宇, 赵璐, 王科伟, 白云峰, 冯锋. 共价有机框架的构筑策略及其在肿瘤治疗中应用的研究进展[J]. 应用化学, 2023, 40(7): 976-994. |
[13] | 冷泽山, 郭洪梅, 蔡函青, 张剑. 高效液相色谱-电雾式检测器法同时检测食品中8种人工甜味剂的应用[J]. 应用化学, 2023, 40(3): 436-440. |
[14] | 秦君, 张瑜, 辛智慧, 李小梅, 张潇, 闫亭璇, 冯锋, 白云峰. CuMn2O4@GA复合材料的合成与CO转化[J]. 应用化学, 2023, 40(12): 1719-1725. |
[15] | 刘忠义, 刘聪, 马永璠, 赵威, 刘艳华, 初洪波. 益肾排石方的指纹图谱及功效关联物质的作用机制[J]. 应用化学, 2023, 40(11): 1558-1571. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 76
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||