应用化学 ›› 2024, Vol. 41 ›› Issue (12): 1697-1711.DOI: 10.19894/j.issn.1000-0518.240190
收稿日期:
2024-06-20
接受日期:
2024-10-30
出版日期:
2024-12-01
发布日期:
2025-01-02
通讯作者:
张文骥
基金资助:
Zi-Chen YI1, Wen-Ji ZHANG1(), Wei YI2, Zi-Hua LI1, Jia-Si JIANG1
Received:
2024-06-20
Accepted:
2024-10-30
Published:
2024-12-01
Online:
2025-01-02
Contact:
Wen-Ji ZHANG
About author:
syphuzwj@163.comSupported by:
摘要:
指纹是犯罪现场最重要的物证形式之一。 在面对缺乏关键信息的疑难案件时,通过推断指纹的遗留时间,办案人员能够划定犯罪嫌疑人的作案时间,进一步缩小侦察范围。 因此,推断出指纹的遗留时间,可以在刑事侦查领域发挥巨大的作用。 近年来,推断指纹遗留时间的研究进展取得了长足的进步,各种指纹遗留时间预测模型相继而生。 本文综述了近10年来在推断指纹遗留时间领域上的研究进展,归纳了干扰测定指纹遗留时间的主要变量(捺印人特征、捺印条件、承痕体属性、环境条件和显现方法),从形态学特征、电化学特性和化学成分3个研究方向重点介绍了推断指纹遗留时间的方法和潜在方法,并讨论了推断指纹遗留时间所面临的挑战和未来的发展方向。
中图分类号:
易梓琛, 张文骥, 易伟, 黎子华, 江嘉思. 推断指纹遗留时间的研究进展[J]. 应用化学, 2024, 41(12): 1697-1711.
Zi-Chen YI, Wen-Ji ZHANG, Wei YI, Zi-Hua LI, Jia-Si JIANG. Research Progress in Inferring Fingerprint Legacy Time[J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1697-1711.
Formation stage | Serial number | Influential factor | Examples | Ref. |
---|---|---|---|---|
Depositions stage | 1 | Donor characteristics | Gender, age, diet, medication intake | [ |
2 | Deposition conditions | Imprinting pressure, contact area, contact time | [ | |
Aging stage | 3 | Substrate properties | Glass, paper, wax surface | [ |
4 | Environmental conditions | Temperature, light, ultraviolet radiation | [ | |
5 | Enhancement techniques | 1,3-Indanedione, alpha-naphthoflavone, 502 glue | [ |
表1 推断指纹遗留时间的影响因素
Table 1 Factors affecting the inference of fingerprint retention time
Formation stage | Serial number | Influential factor | Examples | Ref. |
---|---|---|---|---|
Depositions stage | 1 | Donor characteristics | Gender, age, diet, medication intake | [ |
2 | Deposition conditions | Imprinting pressure, contact area, contact time | [ | |
Aging stage | 3 | Substrate properties | Glass, paper, wax surface | [ |
4 | Environmental conditions | Temperature, light, ultraviolet radiation | [ | |
5 | Enhancement techniques | 1,3-Indanedione, alpha-naphthoflavone, 502 glue | [ |
Serial number | Substrate properties | Representative sample | Collision energy |
---|---|---|---|
1 | Non-porous | Glass, metal, ceramics | All fingerprint residues remain on the surface of the substrate |
2 | Semi-porosity | Waxy surfaces, | Sebaceous compounds seep in very slowly |
3 | Porous | Paper, wood | Fast infiltration of adrenergic compounds, slow infiltration of sebaceous glands |
表2 指纹残留物在3类承痕体上的渗入特性[41,44]
Table 2 Infiltration characteristics of fingerprint residues on three types of substrates[41,44]
Serial number | Substrate properties | Representative sample | Collision energy |
---|---|---|---|
1 | Non-porous | Glass, metal, ceramics | All fingerprint residues remain on the surface of the substrate |
2 | Semi-porosity | Waxy surfaces, | Sebaceous compounds seep in very slowly |
3 | Porous | Paper, wood | Fast infiltration of adrenergic compounds, slow infiltration of sebaceous glands |
图2 (A)不同环境下汗潜指纹与皮脂腺指纹的颜色强度直方图[7]; (B)不同遗留时间的指纹在不同波长下的荧光强度值[68]; (C)基于MI值和IA值的指纹遗留时间模型[69]
Fig.2 (A) Color intensity histograms of sweat or sebaceous fingerprints in different environments[7]; (B) Fluorescence intensity values of fingerprints with different residual times at different wavelengths[68]; (C) Fingerprint legacy time model based on Mean Intensity (MI) and Intensity Amplitude (IA) values[69]
图3 (A)指纹的TOF-SIMS离子图像以及棕榈酸浓度随时间的变化趋势[71]; (B)乳突纹线的宽度随时间的变化趋势[72]; (C)乳突纹线的高度随时间的变化趋势[61]
Fig.3 (A) TOF-SIMS ion images of fingerprints and trends in palmitic acid concentration over time[71]; (B) The variation trend of the width of ridges over time[72]; (C) The variation trend of the height of ridges over time[61]
图4 (A)不同指纹点区域内表面粘附力随时间的变化趋势[73]; (B)恒定相位元件(CPE)的Y0参数随时间变化的数学模型[74]; (C) ESDA检测结果随时间的变化趋势[75]; (D) 7个指纹的遗留时间预测值与实际值结果[79]
Fig.4 (A) The trend of surface adhesion force over time in different point areas[73]; (B) Fluorescence intensity values of fingerprints with different residual times at different wavelengths[74]; (C) The trend of ESDA detection results over time[75]; (D) Age estimation results and actual results for seven fingermarks[79]
图5 (A)光照或黑暗条件下捺印在铝上第1~34天基于6种参数建立的PLSR模型[85]; (B)4枚指纹的遗留时间预测值与实际值结果[84]; (C) D-丝氨酸/丝氨酸随时间的变化趋势[91]
Fig.5 (A) PLSR model based on six parameters for imprinting on aluminum under light or dark conditions for the first to 34th day[85]; (B) Prediction and actual results of the residual time of four fingerprints[84]; (C) The trend of D-serine/serine ratio over time[91]
图6 光照或黑暗条件下捺印在铝上第1~34天的PLSR回归模型[95]
Fig.6 PLSR based on spectral data of aluminum imprinted under light or dark conditions for the 1th to 34th day[95]
Technology | Target | Time | Advantages of the method | Shortcomings of methods | Ref. |
---|---|---|---|---|---|
CWL | Contrast between ridge and small furrows | 24 h | Suitable for fingerprints with short residual time; Not causing damage to fingerprints | The resolution obtained from scanning different secretions varies and needs to be compared with other scanning devices | [ |
Grayscale images | Color contrast between ridge and small furrows | 170 d | High resolution | There is a slight subjectivity in distinguishing; The color contrast is greatly affected by external factors | [ |
TOF-SIMS | Diffusion rate of fatty acid molecules | 4 d | The scope of application is not limited to a single substance; High resolution and high sensitivity | There are strict requirements for the surface roughness of substrate; No interference caused by environmental factors has been measured | [ |
AFM | Width of ridges/distribution of ridges | 11 d/61 d | Can provide 2D and 3D images at the nanoscale; High resolution | The impact of different substrate has not been measured | [ |
PFQNM-AFM | Adhesion in the fingerprint region | 28 d | Can provide changes in the distribution of external secretions; High resolution | The impact of different substrate has not been measured; The impact of chemical interactions between substances cannot be explored; No further investigation was conducted into the reasons for the differences in adhesion force | [ |
OP | Ridge height | 365 d | Provide high-resolution 2D and 3D images; No need to preprocess fingerprints; Having a larger analysis area in high-resolution optical instruments | Slow acquisition time under high-resolution conditions; The roughness of the substrate has a certain impact on the analysis | [ |
EIS | Fingerprint capacitance | 45 d | Can continuously measure changes in the concentration of multiple biomarkers; High sensitivity; Not causing damage to fingerprints | Only applicable to substrate with conductive ability | [ |
ESDA | Fingerprint secretion | 69 d | High contrast and good experimental reproducibility; Has a good display effect | The exact mechanism by which ESDA displays fingerprints has not yet been elucidated; The impact of different substrate has not been measured | [ |
SI-SECM | Degradation rate and coverage of lipid oxides | 180 d | Simultaneously combining the morphological and chemical characteristics of fingerprints; Not causing damage to fingerprints | The degradation mechanism of lipids and factors affecting aging rate have not been elucidated yet | [ |
GC-MS | Lipid | 35 d | The influence of factors such as lighting conditions, imprinting conditions, and trace bearing properties can be explored; High sensitivity | Complex preprocessing; Causing damage to fingerprints | [ |
MALDI-MSI | Triglyceride | 9 d | Further exploration can be conducted on the effects caused by factors such as lighting conditions, imprinting conditions, and substrate types; High sensitivity | The influencing factors of triglyceride oxidation process have not been further explored; Causing damage to fingerprints | [ |
MALDI-MSI | Exogenous substance | 46 d | High resolution and high sensitivity | Failure to elucidate the aging mechanism of exogenous substances | [ |
LC-MS | Protein | 16 d | High sensitivity, high throughput | Proteins in fingerprints are easily contaminated by the environment; The impact of environmental conditions and substrate properties has not been measured; Causing damage to fingerprints | [ |
UPLC-MS/MS | Amino acid | 180 d | The impact caused by the characteristics of the imprinting person is relatively small | Not measuring the impact of different pH values | [ |
ATR-FTIR | Sebaceous gland substance, Exocrine substance | 34 d | Not causing damage to fingerprints | The degradation mechanism of sebaceous glands/exocrine substances has not been elucidated yet | [ |
FS | Tryptophan, Unsaturated lipids | 120 d | Not causing damage to fingerprints | Not suitable for determining the residual time of female fingerprints; Experimental reproducibility is average | [ |
UV-Vis | Urea and amino acids | 7 d | Easy to operate and can be tested on-site | Causing damage to fingerprints; Insufficient sample size | [ |
HSI | ROI | 13 d/18 d | Not causing damage to fingerprints; Good universality | Without measuring the environmental conditions, characteristics of the imprinting person, impact of imprinting conditions | [ |
表3 测定指纹遗留时间方法的总结和优劣对比
Table 3 Summary and comparison of methods for measuring fingerprint retention time
Technology | Target | Time | Advantages of the method | Shortcomings of methods | Ref. |
---|---|---|---|---|---|
CWL | Contrast between ridge and small furrows | 24 h | Suitable for fingerprints with short residual time; Not causing damage to fingerprints | The resolution obtained from scanning different secretions varies and needs to be compared with other scanning devices | [ |
Grayscale images | Color contrast between ridge and small furrows | 170 d | High resolution | There is a slight subjectivity in distinguishing; The color contrast is greatly affected by external factors | [ |
TOF-SIMS | Diffusion rate of fatty acid molecules | 4 d | The scope of application is not limited to a single substance; High resolution and high sensitivity | There are strict requirements for the surface roughness of substrate; No interference caused by environmental factors has been measured | [ |
AFM | Width of ridges/distribution of ridges | 11 d/61 d | Can provide 2D and 3D images at the nanoscale; High resolution | The impact of different substrate has not been measured | [ |
PFQNM-AFM | Adhesion in the fingerprint region | 28 d | Can provide changes in the distribution of external secretions; High resolution | The impact of different substrate has not been measured; The impact of chemical interactions between substances cannot be explored; No further investigation was conducted into the reasons for the differences in adhesion force | [ |
OP | Ridge height | 365 d | Provide high-resolution 2D and 3D images; No need to preprocess fingerprints; Having a larger analysis area in high-resolution optical instruments | Slow acquisition time under high-resolution conditions; The roughness of the substrate has a certain impact on the analysis | [ |
EIS | Fingerprint capacitance | 45 d | Can continuously measure changes in the concentration of multiple biomarkers; High sensitivity; Not causing damage to fingerprints | Only applicable to substrate with conductive ability | [ |
ESDA | Fingerprint secretion | 69 d | High contrast and good experimental reproducibility; Has a good display effect | The exact mechanism by which ESDA displays fingerprints has not yet been elucidated; The impact of different substrate has not been measured | [ |
SI-SECM | Degradation rate and coverage of lipid oxides | 180 d | Simultaneously combining the morphological and chemical characteristics of fingerprints; Not causing damage to fingerprints | The degradation mechanism of lipids and factors affecting aging rate have not been elucidated yet | [ |
GC-MS | Lipid | 35 d | The influence of factors such as lighting conditions, imprinting conditions, and trace bearing properties can be explored; High sensitivity | Complex preprocessing; Causing damage to fingerprints | [ |
MALDI-MSI | Triglyceride | 9 d | Further exploration can be conducted on the effects caused by factors such as lighting conditions, imprinting conditions, and substrate types; High sensitivity | The influencing factors of triglyceride oxidation process have not been further explored; Causing damage to fingerprints | [ |
MALDI-MSI | Exogenous substance | 46 d | High resolution and high sensitivity | Failure to elucidate the aging mechanism of exogenous substances | [ |
LC-MS | Protein | 16 d | High sensitivity, high throughput | Proteins in fingerprints are easily contaminated by the environment; The impact of environmental conditions and substrate properties has not been measured; Causing damage to fingerprints | [ |
UPLC-MS/MS | Amino acid | 180 d | The impact caused by the characteristics of the imprinting person is relatively small | Not measuring the impact of different pH values | [ |
ATR-FTIR | Sebaceous gland substance, Exocrine substance | 34 d | Not causing damage to fingerprints | The degradation mechanism of sebaceous glands/exocrine substances has not been elucidated yet | [ |
FS | Tryptophan, Unsaturated lipids | 120 d | Not causing damage to fingerprints | Not suitable for determining the residual time of female fingerprints; Experimental reproducibility is average | [ |
UV-Vis | Urea and amino acids | 7 d | Easy to operate and can be tested on-site | Causing damage to fingerprints; Insufficient sample size | [ |
HSI | ROI | 13 d/18 d | Not causing damage to fingerprints; Good universality | Without measuring the environmental conditions, characteristics of the imprinting person, impact of imprinting conditions | [ |
1 | 李康, 罗亚平. 指纹证据评价方法的发展: 从经验走向科学[J]. 中国司法鉴定, 2023(4): 38-44. |
LI K, LUO Y P. Development of the evaluation methods for fingerprint evidence: from experience to science[J]. Chin J Forensic Sci, 2023(4): 38-44. | |
2 | WANG Y, WANG J, MA Q, et al. Recent progress in background-free latent fingerprint imaging[J]. Nano Res, 2018, 11: 5499-5518. |
3 | TANG H W, LU W, CHE C M, et al. Gold nanoparticles and imaging mass spectrometry: double imaging of latent fingerprints[J]. Anal Chem, 2010, 82(5): 1589-1593. |
4 | DE ALCARAZ-FOSSOUL J, ZAPICO S C, DEAN E R, et al. Evaluation of latent fingermark color contrast as aging parameter under different environmental conditions: a preliminary study[J]. J Forensic Sci, 2021, 66(2): 719-736. |
5 | DE PUIT M, ISMAIL M, XU X. LCMS analysis of fingerprints, the amino acid profile of 20 donors[J]. J Forensic Sci, 2014, 59(2): 364-370. |
6 | DE ALCARAZ-FOSSOUL J, MESTRES PATRIS C, BARROT FEIXAT C, et al. Latent fingermark aging patterns (part Ⅰ): minutiae count as one indicator of degradation[J]. J Forensic Sci, 2016, 61(2): 322-333. |
7 | DE ALCARAZ-FOSSOUL J, BARROT FEIXAT C, TASKER J, et al. Latent fingermark aging patterns (part Ⅱ): color contrast between ridges and furrows as one indicator of degradation[J]. J Forensic Sci, 2016, 61(4): 947-958. |
8 | 李文杰, 孙令辉, 游伟, 等. 基于飞行时间二次离子质谱的指纹遗留人个体识别的研究[J]. 分析化学, 2023, 51(4): 570-578. |
LI W J, SUN L H, YOU W, et al. Gender recognition of fingerprint remnant based on time-of-flight secondary ion mass spectrometry imaging signal of fingerprint substance[J]. Chin J Anal Chem, 2022, 50(1): 112-118. | |
9 | JALALI S, BOOSTANI R, MOHAMMADI M. Efficient fingerprint features for gender recognition[J]. Multidim Syst Sign Process, 2022, 33(1): 81-97. |
10 | PLEIK S, SPENGLER B, SCHÄFER T, et al. Fatty acid structure and degradation analysis in fingerprint residues[J]. J Am Soc Mass Spectrom, 2016, 27(9): 1565-1574. |
11 | 王元凤, 杨瑞琴, 王彦吉. 潜指纹残留物中油脂的气相色谱分析[J]. 分析试验室, 2008, 27(7): 49-53. |
WANG Y F, YANG R Q, WANG Y J. Analysis of lipid composition in latent fingerprint residues by gas chromatography[J]. Chin J Anal Lab, 2008, 27(7): 49-53. | |
12 | CHEN H, SHI M, MA R, et al. Advances in fingermark age determination techniques[J]. Analyst, 2021, 146(1): 33-47. |
13 | DE ALCARAZ-FOSSOUL J. Latent fingermarks as complex physical, chemical, and biological structures[M]//Technologies for Fingermark Age Estimations: A Step Forward. Cham: Springer International Publishing, 2021: 35-57. |
14 | 钟新文, 张忠良. 手印学[M]. 北京: 中国人民公安大学出版社, 2014: 223-225. |
ZHONG X W, ZHANG Z L. Fingerprinting[M]. Beijing: Publishing House of People′s Public Security, 2014: 223-225. | |
15 | 赵向欣, 刘文. 指纹技术[M]. 北京: 中国人民公安大学出版社, 2003: 403-408. |
ZHAO X X, LIU W. Fingerprint technology[M]. Beijing: Publishing House of People′s Public Security University of China, 2003: 403-408. | |
16 | HUYNH C, BRUNELLE E, HALÁMKOVÁ L, et al. Forensic identification of gender from fingerprints[J]. Anal Chem, 2015, 87(22): 11531-11536. |
17 | 宋焕庭, 唐玮, 张丽梅, 等. 指纹与年龄相关性的量化分析[J]. 人类学学报, 2022, 41(6): 1047-1057. |
SONG H T, TANG W, ZHANG L M, et al. Quantitative analysis of the correlation between fingerprint and age[J]. Acta Anthropologica Sin, 2022, 41(6): 1047-1057. | |
18 | 赵瑞敏, 刘凯, 张丽梅, 等. 基于随机森林算法的手印年龄分类研究[J]. 刑事技术, 2023, 48(5): 449-458. |
ZHAO R M, LIU K, ZHANG L M, et al. A study of age classification by handprint based on random forest algorithm[J]. Forensic Sci Technol, 2023, 48(5): 449-458. | |
19 | PHAN K, BARASH M, SPINDLER X, et al. Retrieving forensic information about the donor through bacterial profiling[J]. J Leg Med, 2020, 134: 21-29. |
20 | CROXTON R S, BARON M G, BUTLER D, et al. Variation in amino acid and lipid composition of latent fingerprints[J]. Forensic Sci Int, 2010, 199(1/2/3): 93-102. |
21 | GOUCHER E, KICMAN A, SMITH N, et al. The detection and quantification of lorazepam and its 3-O-glucuronide in fingerprint deposits by LC-MS/MS[J]. J Sep Sci, 2009, 32(13): 2266-2272. |
22 | KUWAYAMA K, MIYAGUCHI H, YAMAMURO T, et al. Effectiveness of saliva and fingerprints as alternative specimens to urine and blood in forensic drug testing[J]. Drug Test Anal, 2016, 8(7): 644-651. |
23 | SZYNKOWSKA M I, CZERSKI K, ROGOWSKI J, et al. ToF-SIMS application in the visualization and analysis of fingerprints after contact with amphetamine drugs[J]. Forensic Sci, 2009, 184(1/2/3): e24-e26. |
24 | CROXTON R S, BARON M G, BUTLER D, et al. Variation in amino acid and lipid composition of latent fingerprints[J]. Forensic Sci Int, 2010, 199(1/2/3): 93-102. |
25 | DATTA A K, LEE H C, RAMOTOWSKI R, et al. Advances in fingerprint technology[M]. New York: CRC Press, 2001. |
26 | PENN D J, OBERZAUCHER E, GRAMMER K, et al. Individual and gender fingerprints in human body odour[J]. J R Soc, 2007, 4(13): 331-340. |
27 | VAN HELMOND W, VAN HERWIJNEN A W, VAN RIEMSDIJK J J H, et al. Chemical profiling of fingerprints using mass spectrometry[J]. Forensic Chem, 2019, 16: 100183. |
28 | ANTOINE K M, MORTAZAVI S, MILLER A D, et al. Chemical differences are observed in children′s versus adults′ latent fingerprints as a function of time[J]. Forensic Sci, 2010, 55(2): 513-518. |
29 | ASANO K G, BUCHANAN M V, BAYNE C K, et al. Chemical composition of fingerprints for gender determination[J]. Forensic Sci, 2002, 47(4): JFS15460J. |
30 | WILLIAMS D K, BROWN C J, BRUKER J. Characterization of children′s latent fingerprint residues by infrared microspectroscopy: forensic implications[J]. Forensic Sci, 2011, 206(1/2/3): 161-165. |
31 | 郭少波, 王芫, 王炎, 等. 探析高分辨率指纹特定条件下三级特征的稳定性[J]. 中国司法鉴定, 2013(1): 56-61. |
GUO S B, WANG Y, WANG Y, et al. Analysis of the stability of level 3 features of high resolution fingerprint under certain conditions[J]. Chin J Forensic Sci, 2013(1): 56-61. | |
32 | DA SILVA CARVALHO D, DE ALECRIM M M V, DE SOUSA JÚNIOR R T, et al. Outcome of sex determination from ulnar and radial ridge densities of Brazilians′ fingerprints: applying an existing method to a new population[J]. Sci Justice, 2022, 62(2): 181-192. |
33 | 宋焕庭, 梁彦林, 于雷, 等. 手印分析年龄之形态学方法初探[J]. 刑事技术, 2023, 48(6): 551-562. |
SONG H T, LIANG Y L, YU L, et al. Estimation of human age group by morphology-based method form fingerprints: a preliminary study[J]. Forensic Sci Technol, 2023, 48(6): 551-562. | |
34 | VERMA M, AGARWAL S. Fingerprint based male-female classification[C]//Proceedings of the International Workshop on Computational Intelligence in Security for Information Systems CISIS′08. Springer Berlin Heidelberg, 2009: 251-257. |
35 | SÁNCHEZ-ANDRÉS A, BAREA J A, RIVALDERÍA N, et al. Impact of aging on fingerprint ridge density: anthropometry and forensic implications in sex inference[J]. Sci Justice, 2018, 58(5): 323-334. |
36 | DHALL J K, KAPOOR A K. Fingerprint ridge density as a potential forensic anthropological tool for sex identification[J]. J Forensic Sci, 2016, 61(2): 424-429. |
37 | NAYAK V C, RASTOGI P, KANCHAN T, et al. Sex differences from fingerprint ridge density in Chinese and Malaysian population[J]. Forensic Sci Int, 2010, 197(1/2/3): 67-69. |
38 | CADD S, ISLAM M, MANSON P, et al. Fingerprint composition and aging: a literature review[J]. Sci Justice, 2015, 55(4): 219-238. |
39 | SZABÓOVÁ Ž, GALBAVÁ P, SZABÓ A H, et al. GC-MS/MS method for age determination of fingerprints[J]. Monatsh Chem, 2017, 148: 1673-1678. |
40 | JASUJA O P, TOOFANY M A, SINGH G, et al. Dynamics of latent fingerprints: the effect of physical factors on quality of ninhydrin developed prints-A preliminary study[J]. Sci Justice, 2009, 49(1): 8-11. |
41 | GIROD A, RAMOTOWSKI R, WEYERMANN C. Composition of fingermark residue: a qualitative and quantitative review[J]. Forensic Sci, 2012, 223(1/2/3): 10-24. |
42 | ALMOG J, AZOURY M, ELMALIAH Y, et al. Fingerprint′s third dimension: the depth and shape of fingerprints penetration into paper-cross section examination by fluorescence microscopy[J]. J Forensic Sci, 2004, 49(5): 981-985. |
43 | SIEGEL J A, SAUKKO P J. Encyclopedia of forensic sciences[M]. American Library Association Academic Press, 2012. |
44 | ARCHER N E, CHARLES Y, ELLIOTT J A, et al. Changes in the Lipid Composition of Latent Fringerprint Residue with Time after Deposition on a Surface[J]. Forensic Sci Int, 2005, 154(2/3): 224-239. |
45 | WEYERMANN C, ROUX C, CHAMPOD C. Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis[J]. J Forensic Sci, 2011, 56(1): 102-108. |
46 | WERTHEIM K. Fingerprint age determination: is there any hope?[J]. J Forensic Ident, 2003, 53(1): 42. |
47 | JONES N, MANSOUR D, STOILOVIC M, et al. The influence of polymer type, print donor and age on the quality of fingerprints developed on plastic substrates using vacuum metal deposition[J]. Forensic Sci, 2001, 124(2/3): 167-177. |
48 | MOUNTFORT K A, BRONSTEIN H, ARCHER N, et al. Identification of oxidation products of squalene in solution and in latent fingerprints by ESI-MS and LC/APCI-MS[J]. Anal Chem, 2007, 79(7): 2650-2657. |
49 | DORAKUMBURA B N, BUSETTI F, LEWIS S W. Analysis of squalene and its transformation by-products in latent fingermarks by ultrahigh-performance liquid chromatography-high resolution accurate mass Orbitrap™ mass spectrometry[J]. Forensic Chem, 2020, 17: 100193. |
50 | GIROD A, RAMOTOWSKI R, LAMBRECHTS S, et al. Fingermark age determinations: legal considerations, review of the literature and practical propositions[J]. Forensic Sci Int, 2016, 262: 212-226. |
51 | PICARDO M, ZOMPETTA C, DE LUCA C, et al. Squalene peroxides may contribute to ultraviolet light-induced immunological effects[J]. Photodermatol Photoimmunol Photomed, 1991, 8(3): 105-110. |
52 | RICHMOND-AYLOR A, BELL S, CALLERY P, et al. Thermal degradation analysis of amino acids in fingerprint residue by pyrolysis GC-MS to develop new latent fingerprint developing reagents[J]. J Forensic Sci, 2007, 52(2): 380-382. |
53 | DE PAOLI G, LEWIS SR S A, SCHUETTE E L, et al. Photo- and thermal-degradation studies of select eccrine fingerprint constituents[J]. J Forensic Sci, 2010, 55(4): 962-969. |
54 | RICCI C, PHIRIYAVITYOPAS P, CURUM N, et al. Chemical imaging of latent fingerprint residues[J]. Appl Spectrosc, 2007, 61(5): 514-522. |
55 | KOENIG A, GIROD A, WEYERMANN C. Identification of wax esters in latent print residues by gas chromatography-mass spectromertry and their potential use as aging parameters[J]. J Forensic Identifi, 2011, 61(6): 606-631. |
56 | ABEBE B, MURTHY H C A, ZEREFFA E A, et al. Latent fingerprint enhancement techniques: a review[J]. J Chem Rev, 2020, 2(1): 40-56. |
57 | HE Y, XU L, ZHU Y, et al. Immunological multimetal deposition for rapid visualization of sweat fingerprints[J]. Angew Chem Int Ed, 2014, 53(46): 12609-12612. |
58 | SHI M, WEI Q, TIAN L, et al. Label-free physical and electrochemical imaging of latent fingerprints by water and SECM[J]. Electrochim Acta, 2020, 350: 136373. |
59 | WEI R, TIAN L, CHEN H, et al. Colorimetric visualization and SECM imaging of latent fingerprints on food surfaces[J]. Electrochim Acta, 2022, 422: 140502. |
60 | DE ALCARAZ-FOSSOUL J, BARROT FEIXAT C C, ZAPICO S, et al. Latent fingermark aging patterns (part Ⅳ): ridge width as one indicator of degradation[J]. J Forensic Sci, 2019, 64(4): 1057-1066. |
61 | DE ALCARAZ-FOSSOUL J, MANCENIDO M, SOIGNARD E, et al. Application of 3D imaging technology to latent fingermark aging studies[J]. J Forensic Sci, 2019, 64(2): 570-576. |
62 | 王红娟, 时蜜, 田璐, 等. 指纹遗留时间的研究方法[J]. 化学进展, 2019, 31(5): 654-666. |
WANG H J, SHI M, TIAN L, et al. Methods for studying the age determination of fingermarks[J]. Pro Chem, 2019, 31(5): 654-666. | |
63 | DE ALCARAZ-FOSSOUL J, BARROT FEIXAT C, CARRERAS-MARIN C, et al. Latent fingermark aging patterns (part Ⅲ): discontinuity index as one indicator of degradation[J]. J Forensic Sci, 2017, 62(5): 1180-1187. |
64 | MERKEL R, GRUHN S, DITTMANN J, et al. On non-invasive 2D and 3D chromatic white light image sensors for age determination of latent fingerprints[J]. Forensic Sci Int, 2012, 222(1/2/3): 52-70. |
65 | MERKEL R, DITTMANN J, VIELHAUER C. Resource-efficient latent fingerprint age estimation for adhoc crime scene forensics: quality assessment of flat bed scans and statistical features[C]//2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2016: 1-6. |
66 | MERKEL R, DITTMANN J, VIELHAUER C. A first public research collection of high-resolution latent fingerprint time series for short-and long-term print age estimation[J]. IEEE Trans Inf Forensics Secur, 2017, 12(10): 2276-2291. |
67 | DE ALCARAZ-FOSSOUL J, EINFALT M R, DEAN E R, et al. Repeatability and reproducibility of the color contrast technique for fingermark age estimation applications[J]. J Forensic Sci, 2021, 66(3): 1075-1084. |
68 | AKIBA N, KUROKI K, KUROSAWA K, et al. Visualization of aged fingerprints with an ultraviolet laser[J]. J Forensic Sci, 2018, 63(2): 556-562. |
69 | DE ALCARAZ-FOSSOUL J, EINFALT M R, KAMMRATH B W. The influence of biological sex on latent fingermark aging as examined by the color contrast technique[J]. J Forensic Sci, 2022, 67(4): 1476-1489. |
70 | WEI R, TIAN L, CHEN H, et al. Colorimetric visualization and SECM imaging of latent fingerprints on food surfaces[J]. Electrochim Acta, 2022, 422: 140502. |
71 | MURAMOTO S, SISCO E. Strategies for potential age dating of fingerprints through the diffusion of sebum molecules on a nonporous surface analyzed using time-of-flight secondary ion mass spectrometry[J]. Anal Chem, 2015, 87(16): 8035-8038. |
72 | POPOV K T, SEARS V G, JONES B J. Migration of latent fingermarks on non-porous surfaces: observation technique and nanoscale variations[J]. Forensic Sci Int, 2017, 275: 44-56. |
73 | DORAKUMBURA B N, BECKER T, LEWIS S W. Nanomechanical mapping of latent fingermarks: a preliminary investigation into the changes in surface interactions and topography over time[J]. Forensic Sci Int, 2016, 267: 16-24. |
74 | ROSA R, GIOVANARDI R, BOZZA A, et al. Electrochemical impedance spectroscopy: a deeper and quantitative insight into the fingermarks physical modifications over time[J]. Forensic Sci Int, 2017, 273: 144-152. |
75 | ZAMPA F, MANCINI L, CALIGIORE G. Fingermark visualization exploiting electrostatic detection apparatus (ESDA): the effect of the composition and age of the latent deposit[J]. J Forensic Sci, 2021, 66(3): 1094-1103. |
76 | ZHANG M, GIRAULT H H. Fingerprint imaging by scanning electrochemical microscopy[J]. Electrochem Commun, 2007, 9(7): 1778-1782. |
77 | TIAN L, WANG X, ZHAO L, et al. Direct detection of label-free blood fingermarks by SECM imaging[J]. Electrochem Commun, 2019, 102: 89-93. |
78 | WEI R, TIAN L, CHEN H, et al. Colorimetric visualization and SECM imaging of latent fingerprints on food surfaces[J]. Electrochim Acta, 2022, 422: 140502. |
79 | CHEN H, TIAN L, SUN X, et al. New horizons for estimating the time since deposition of fingermarks: combining label-free physical visualization and electrochemical characterization[J]. Anal Chem, 2022, 95(2): 889-897. |
80 | CHAMPOD C, LENNARD C J, MARGOT P, et al. Fingerprints and other ridge skin impressions[M]. New York: CRC Press, 2004. |
81 | VAN HELMOND W, VAN HERWIJNEN A W, VAN RIEMSDIJK J J H, et al. Chemical profiling of fingerprints using mass spectrometry[J]. Forensic Chem, 2019, 16: 100183. |
82 | XU L, ZHANG C, HE Y, et al. Advances in the development and component recognition of latent fingerprints[J]. Sci China Chem, 2015, 58: 1090-1096. |
83 | 张文骥, 陈卓, 张婷, 等. 汗液中美托洛尔及其代谢物的提取与检测[J]. 中国司法鉴定, 2016(6): 28-32. |
ZHANG W J, CHEN Z, ZHANG T, et al. Detection of metoprolol and α-hydro-metoprolol in human sweat[J]. Chin J Forensic Sci, 2016(6): 28-32. | |
84 | PATTEN D R, PAULSON A E, FORSMAN T T, et al. Predicting fingerprint age based on ozonolysis kinetics of unsaturated triacylglycerol degradation[J]. Anal Chem, 2023, 95(32): 12047-12053. |
85 | GIROD A, SPYRATOU A, HOLMES D, et al. Aging of target lipid parameters in fingermark residue using GC/MS: effects of influence factors and perspectives for dating purposes[J]. Sci Justice, 2016, 56(3): 165-180. |
86 | FRICK A A, CHIDLOW G, GOODPASTER J V, et al. Monitoring compositional changes of the lipid fraction of fingermark residues deposited on paper during storage[J]. Forensic Chem, 2016, 2: 29-36. |
87 | PLEIK S, SPENGLER B, BHANDARI D R, et al. Ambient-air ozonolysis of triglycerides in aged fingerprint residues[J]. Analyst, 2018, 143(5): 1197-1209. |
88 | FRICK A A, KUMMER N, MORALEDA A, et al. Changes in latent fingermark glyceride composition as a function of sample age using UPLC-IMS-QToF-MSE[J]. Analyst, 2020, 145(12): 4212-4223. |
89 | FRISCH K, NIELSEN K L, FRANCESE S. MALDI MSI separation of same donor′s fingermarks based on time of deposition-a proof-of-concept study[J]. Molecules, 2023, 28(6): 2763. |
90 | OONK S, SCHUURMANS T, PABST M, et al. Proteomics as a new tool to study fingermark ageing in forensics[J]. Sci Rep, 2018, 8(1): 16425. |
91 | VAN HELMOND W, WEENING M, VLEER V, et al. Analysis of amino acid enantiomers from aged fingerprints[J]. Anal Methods, 2020, 12(15): 2052-2057. |
92 | VAN DAM A, SCHWARZ J C V, DE VOS J, et al. Oxidation monitoring by fluorescence spectroscopy reveals the age of fingermarks[J]. Angew Chem Int Ed, 2014, 53(24): 6272-6275. |
93 | 戎辉, 林子清, 陈禹冰, 等. 汗液指纹遗留时间推断的实验性研究[J]. 中国法医学杂志, 2017, 32(6): 552-556. |
RONG H, LIN Z Q, CHEN Y B, et al. Experimental study on age estimation of fingermarks[J]. Chin J Forensic Med, 2017, 32(6): 552-556. | |
94 | ANDERSSON P O, LEJON C, MIKAELSSON T, et al. Towards fingermark dating: a raman spectroscopy proof-of-concept study[J]. Chem Open, 2017, 6(6): 706-709. |
95 | GIROD A, XIAO L, REEDY B, et al. Fingermark initial composition and aging using Fourier transform infrared microscopy (μ-FTIR)[J]. Forensic Sci Int, 2015, 254: 185-196. |
96 | BOSELEY R E, VONGSVIVUT J, APPADOO D, et al. Monitoring the chemical changes in fingermark residue over time using synchrotron infrared spectroscopy[J]. Analyst, 2022, 147(5): 799-810. |
97 | 唐鹏宇, 王震. 高光谱结合多模型的玻璃上汗潜指纹遗留时间研究[J]. 激光与光电子学进展, 2024, 61(18): 140-146. |
TANG P Y, WANG Z. Research on the retention time of sweat latent fingerprints on glass by hyperspectral combination with multiple models[J]. Appl Laser, 2024, 61(18): 140-146. | |
98 | 唐鹏宇, 王震, 葛恒. 高光谱结合SVM的室内客体上汗潜指纹遗留时间研究[J/OL]. 应用激光, 1-10[2024-09-03]. http://kns.cnki.net/kcms/detail/31.1375.T.20240822.1019.004.html. |
TANG P Y, WANG Z, GE H. Research on age estimation of sweat latent fingermarks on indoor objects by research on age estimation of sweat latent fingermarks on indoor objects by hyperspectral combined with SVM[J]. Appl Laser, 1-10[2024-09-03]. http://kns.cnki.net/kcms/detail/31.1375.T.20240822.1019.004.html. | |
99 | GIROD A, WEYERMANN C. Lipid composition of fingermark residue and donor classification using GC/MS[J]. Forensic Sci Int, 2014, 238: 68-82. |
[1] | 林韦珂, 向莹, 王芳. 基于太阳能光电转化的污水治理研究进展[J]. 应用化学, 2024, 41(9): 1227-1237. |
[2] | 刁兆杨, 刘莉, 李晨明, 孙欢利. 纳米药物在急性髓系白血病治疗中应用的研究进展[J]. 应用化学, 2024, 41(9): 1259-1270. |
[3] | 王瑶瑶, 孙铭阳, 杨钻, 杜绍恺, 何禹璇, 孙越. 基于柔性电极和信号放大技术构建检测磷脂酶C的电化学传感器[J]. 应用化学, 2024, 41(7): 987-997. |
[4] | 李英维, 韩吉, 关卜源. 二维介孔材料的合成方法、设计与应用研究进展[J]. 应用化学, 2024, 41(6): 767-782. |
[5] | 王婕, 王书航, 周绍岩, 梁潇云, 徐可进. 连朴饮基准样品高效液相色谱指纹图谱建立及化学成分鉴定[J]. 应用化学, 2024, 41(6): 813-829. |
[6] | 张冬玉, 王春丽, 程勇, 王立民. 钠/钾离子电池用锑基负极研究进展:失效分析及解决方案[J]. 应用化学, 2024, 41(5): 616-636. |
[7] | 吴厚燃, 侯春明, 段体岗, 马力, 张海兵, 王金涛. Al-Ga-In-Sn-Si合金阳极及海水溶解氧电池的电化学性能[J]. 应用化学, 2024, 41(5): 703-711. |
[8] | 陈胜, 胡祖飞, 曹洪美, 赵振华, 张宇栋. 镁掺杂高镍三元正极材料LiNi0.90Co0.05Mn0.05O2的合成与性能[J]. 应用化学, 2024, 41(4): 568-576. |
[9] | 朴禹涵, 马丽婷, 罗静, 刘书晗, 白若冰, 张若妍, 越皓, 郑飞. 通腑泻下颗粒指纹图谱的建立及7种成分的定量分析[J]. 应用化学, 2024, 41(4): 577-585. |
[10] | 王野谌, 邱智东, 张衍旭, 王俪颖, 王茂旭, 董雪莲. 基于指纹图谱、量值传递及化学计量学的薏苡竹叶散质量评价[J]. 应用化学, 2024, 41(3): 422-436. |
[11] | 谢东, 胡健楠, 李念, 杨桔, 黄青, 皮子凤, 郑飞, 戴雨霖, 越皓. 基于UPLC-Q TOF-MSE技术的藤黄健骨丸指纹图谱建立及共有峰鉴定[J]. 应用化学, 2024, 41(3): 437-444. |
[12] | 杨翠翠, 叶晓雪. 基于小分子识别的光电化学传感器用于组氨酸检测[J]. 应用化学, 2024, 41(1): 128-136. |
[13] | 刘凌波, 李双, 吴康兵. 激光雕刻石墨烯阵列电极测定曲美他嗪[J]. 应用化学, 2024, 41(1): 147-155. |
[14] | 姚春莹, 朱晓艳, 刘艳玲. 三维葡萄糖电化学传感器与胶原水凝胶集成实时监测细胞代谢[J]. 应用化学, 2024, 41(1): 156-163. |
[15] | 罗二桂, 唐涛, 王艺, 张俊明, 常宇虹, 胡天军, 贾建峰. 两电子氧还原制备过氧化氢:贵金属催化剂的几何与电子结构调控的研究进展[J]. 应用化学, 2023, 40(8): 1063-1076. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||