应用化学 ›› 2024, Vol. 41 ›› Issue (5): 703-711.DOI: 10.19894/j.issn.1000-0518.230332
吴厚燃1,2, 侯春明3, 段体岗2(), 马力2, 张海兵2, 王金涛2
收稿日期:
2023-10-25
接受日期:
2024-03-16
出版日期:
2024-05-01
发布日期:
2024-06-03
通讯作者:
段体岗
Hou-Ran WU1,2, Chun-Ming HOU3, Ti-Gang DUAN2(), Li MA2, Hai-Bing ZHANG2, Jin-Tao WANG2
Received:
2023-10-25
Accepted:
2024-03-16
Published:
2024-05-01
Online:
2024-06-03
Contact:
Ti-Gang DUAN
About author:
duantigang@sunrui.netSupported by:
摘要:
通过Ga、In和Sn低熔点合金元素改性,成功制备了高负电位高活化Al-Ga-In-Sn-Si合金阳极,通过材料表征和电化学测试研究了Al-Ga-In-Sn-Si合金的腐蚀行为和电化学性能,并与碳纤维刷-石墨烯-铂(Pt-G@CFB)催化阴极搭建了海水溶解氧电池,考察了室内静态海水环境和实际海洋环境下电池不同恒电阻的长周期放电性能。 结果表明,Al-Ga-In-Sn-Si合金的自腐蚀电位为-1.613 V(vs.Ag/AgCl),自腐蚀电流密度为1.431 mA/cm2。 随着负载电阻的增加,电池电压上升,在室内静态和实海动态海水中2000 Ω的负载下海水溶解氧电池平均放电电压最高,分别为1.73和1.78 V,在1000 Ω的负载下平均能量密度最大,分别为549.85和653.44 Wh/kg。
中图分类号:
吴厚燃, 侯春明, 段体岗, 马力, 张海兵, 王金涛. Al-Ga-In-Sn-Si合金阳极及海水溶解氧电池的电化学性能[J]. 应用化学, 2024, 41(5): 703-711.
Hou-Ran WU, Chun-Ming HOU, Ti-Gang DUAN, Li MA, Hai-Bing ZHANG, Jin-Tao WANG. Electrochemical Properties of Al-Ga-In-Sn-Si Alloy Anodes and Seawater Dissolved Oxygen Batteries[J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 703-711.
Samples | Ecorr/V(vs.Ag/AgCl) | Icorr/(mA·cm-2) | -βc/(mV·dec-1) | βa/(mV·dec-1) | Rp/(Ω·cm2) |
---|---|---|---|---|---|
Al-Ga-In-Sn-Si | -1.613 | 1.431 | 406.2 | 282.9 | 50.6 |
表1 Al-Ga-In-Sn-Si合金的腐蚀参数
Table 1 Corrosion parameters of Al-Ga-In-Sn-Si alloy in sea water
Samples | Ecorr/V(vs.Ag/AgCl) | Icorr/(mA·cm-2) | -βc/(mV·dec-1) | βa/(mV·dec-1) | Rp/(Ω·cm2) |
---|---|---|---|---|---|
Al-Ga-In-Sn-Si | -1.613 | 1.431 | 406.2 | 282.9 | 50.6 |
Parameters | Rs/(Ω·cm2) | CPE1/(F·cm-2) | n1 | Rt/(Ω·cm2) | CPE2/(F·cm-2) | n2 | R2/(Ω·cm2) | L2/(H·cm2) | Rl/(Ω·cm2) |
---|---|---|---|---|---|---|---|---|---|
5.68 | 5.21×10-7 | 0.79 | 506.7 | 2.54×10-6 | 1 | 34.26 | 1.99×10-4 | 5.49×10-5 |
表2 拟合的EIS参数
Table 2 Fitted EIS parameters
Parameters | Rs/(Ω·cm2) | CPE1/(F·cm-2) | n1 | Rt/(Ω·cm2) | CPE2/(F·cm-2) | n2 | R2/(Ω·cm2) | L2/(H·cm2) | Rl/(Ω·cm2) |
---|---|---|---|---|---|---|---|---|---|
5.68 | 5.21×10-7 | 0.79 | 506.7 | 2.54×10-6 | 1 | 34.26 | 1.99×10-4 | 5.49×10-5 |
图7 海水溶解氧电池在室内静态海水(A)和实际动态海水(B)中电池电压-时间关系图
Fig.7 Diagram of battery volt-time relationship of seawater dissolved oxygen battery in indoor static seawater (A) and real dynamic seawater (B)
Battery | In indoor static seawater | In real dynamic seawater | ||||
---|---|---|---|---|---|---|
2000 Ω | 1000 Ω | 500 Ω | 2000 Ω | 1000 Ω | 500 Ω | |
Average voltage/V | 1.73 | 1.63 | 1.51 | 1.78 | 1.64 | 1.53 |
Energy density/(W·h·kg-1) | 384.51 | 549.85 | 481.4 | 515.21 | 653.44 | 431.33 |
表3 海水溶解氧电池在室内静态和实际动态海水中放电的电池参数
Table 3 Battery parameters for discharge of seawater batteries in indoor static and real dynamic seawater
Battery | In indoor static seawater | In real dynamic seawater | ||||
---|---|---|---|---|---|---|
2000 Ω | 1000 Ω | 500 Ω | 2000 Ω | 1000 Ω | 500 Ω | |
Average voltage/V | 1.73 | 1.63 | 1.51 | 1.78 | 1.64 | 1.53 |
Energy density/(W·h·kg-1) | 384.51 | 549.85 | 481.4 | 515.21 | 653.44 | 431.33 |
图9 Al-Ga-In-Sn-Si合金阳极腐蚀产物及去除腐蚀产物形貌A. surface microstructure after removal of corrosion products; B. surface morphology of Al-Ga-In-Sn-Si alloy anode after corrosion; C. EDS spectrum of Al-Ga-In-Sn-Si alloy after corrosion
Fig.9 Morphology of anode corrosion products and removal corrosion products of Al-Ga-In-Sn-Si alloy
1 | TZENG Y C, CHEN R Y. The effect of the Zn content on the electrochemical performance of Al-Zn-Sn-Ga alloys[J]. Mater Chem Phys, 2023, 299: 127510. |
2 | ZHAO Q, ZHENG J X, DENG Y, et al. Regulating the growth of aluminum electrodeposits: towards anode-free Al batteries[J]. J Mater Chem A, 2020, 8(44): 23231-23238. |
3 | 冯壮壮, 梅迪, 朱世杰, 等. 一次镁空气电池阳极材料研究进展[J]. 材料开发与应用, 2022, 37(6): 12-21. |
FENG Z Z, MEI D, ZHU S J, et al. Research progress of anode materials for primary magnesium-air batteries[J]. Dev Appl Mater, 2022, 37(6): 12-21. | |
4 | ZHANG Z K, WANG Y B, WEI X F, et al. High energy efficiency and high discharge voltage of 2N-purity Al-based anodes for Al-air battery by simultaneous addition of Mn, Zn and Ga[J]. J Power Sources, 2023, 563: 232845. |
5 | WANG Y Y, LIU H L, JIA Z M, et al. The electrochemical performance of Al-Mg-Ga-Sn-xBi alloy used as the anodic material for Al-air battery in KOH electrolytes[J]. Crystals, 2022, 12(12): 1785. |
6 | ABBAS M, SADAWY M, HOSNY A. Microstructure and electrochemical properties of Al-5Zn-0.2Sn-0.2Bi-xSb as a novel electrode for batteries applications[J]. J Alloys Compd, 2022, 923: 166303. |
7 | LIANG R, SU Y, SUI X L, et al. Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery[J]. J Solid State Electrochem, 2019, 23: 53-62. |
8 | ZHOU S G, TIAN C, ALZOABI S, et al. Performance of an Al-0.08Sn-0.08Ga-xMg alloy as an anode for Al-air batteries in alkaline electrolytes[J]. J Mater Sci, 2020, 55: 11477-11488. |
9 | WU Z B, ZHANG H T, GUO C, et al. Effects of indium, gallium, or bismuth additions on the discharge behavior of Al-Mg-Sn-based alloy for Al-air battery anodes in NaOH electrolytes[J]. J Solid State Electrochem, 2019, 23(8): 2483-2491. |
10 | SUN Z G, LU H M. Performance of Al-0.5In as anode for Al-air battery in inhibited alkaline solutions[J]. J Electrochem Soc, 2015, 162(8): A1617. |
11 | ZHANG H T, ZHENG Y Q, YIN G, et al. The influence of Ga, Sn, or Bi addition on the electrochemical behavior and discharge performance of Al-Zn-In anodes for Al-air batteries[J]. J Mater Sci, 2021, 56(18): 11011-11026. |
12 | ZHUANG Z H, FENG Y, PENG C Q, et al. Effect of Ga on microstructure and electrochemical performance of Al-0.4Mg-0.05Sn-0.03Hg alloy as anode for Al-air batteries[J]. Trans Nonferrous Met Soc China, 2021, 31(9): 2558-2569. |
13 | PARK I J, CHOI S R, KIM J G. Aluminum anode for aluminum-air battery-part Ⅱ: influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution[J]. J Power Sources, 2017, 357: 47-55. |
14 | ZHANG C, WANG R C, FENG Y, et al. Effects of alloying elements on electrochemical performance of aluminum anodes[J]. J Cent South Univ Technol (Nat Sci), 2012, 43(1): 81-86. |
15 | HE J G, WEN J B, LI X D, et al. Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes[J]. Trans Nonferrous Met Soc China, 2011, 21(7): 1580-1586. |
16 | WANG Q, MIAO H, XUE Y J, et al. Performances of an Al-0.15Bi-0.15Pb-0.035Ga alloy as an anode for Al-air batteries in neutral and alkaline electrolytes[J]. RSC Adv, 2017, 7(42): 25838-25847. |
17 | HERRAIZ-CARDONA I, ORTEGA E, PÉREZ-HERRANZ V. Impedance study of hydrogen evolution on Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits[J]. Electrochim Acta, 2011, 56(3): 1308-1315. |
18 | WU Z, ZHANG H, NAGAUMI H, et al. Effect of microstructure evolution on the discharge characteristics of Al-Mg-Sn-based anodes for Al-air batteries[J]. J Power Sources, 2022, 521: 230928. |
19 | WU Z B, ZHANG H T, ZOU J, et al. Effect of microstructure on discharge performance of Al-0.8Sn-0.05Ga-0.9Mg-1.0Zn (wt.%) alloy as anode for seawater-activated battery[J]. Mater Corros, 2020, 71(10): 1680-1690. |
20 | ZHANG C, CAI Z Y, WANG R C, et al. Enhancing the electrochemical performance of Al-Mg-Sn-Ga alloy anode for Al-air battery by solution treatment[J]. J Electrochem Soc, 2021, 168(3): 030519. |
21 | AN Q, HU H Y, LI N, et al. Strategies for improving flow rate control of hydrogen generated by Al-rich alloys for on-board applications[J]. Int J Hydrogen Energy, 2019, 44(51): 27695-27703. |
22 | AN Q, GAO Q, WANG H C, et al. Insight into the indium-related morphology transformation and application for hydrogen production of Al-rich alloys[J]. J Alloys Compd, 2020, 842: 155864. |
23 | EVANS D S, PRINCE A. Thermal analysis of Ga-In-Sn system[J]. Met Sci, 1978, 12(9): 411-414. |
24 | DAENEKE T, KHOSHMANESH K, MAHMOOD N, et al. Liquid metals: fundamentals and applications in chemistry[J]. Chem Soc Rev, 2018, 47(11): 4073-4111. |
25 | XU S, ZHAO X, LIU J. Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature[J]. Renewable Sustainable Energy Rev, 2018, 92: 17-37. |
26 | PANIAGUA ROJAS J, GONZáLEZ-HERNáNDEZ J E, CUBERO-SESIN J M, et al. Benchmarking of aluminum alloys processed by high-pressure torsion: Al-3%Mg alloy for high-energy density Al-air batteries[J]. Energy Fuels, 2023, 37(6): 4632-4640. |
27 | SPERANDIO G F, SANTOS C M L, GALDINO A. Influence of silicon on the corrosion behavior of Al-Zn-In sacrificial anode[J]. J Mater Res Technol, 2021, 15: 614-622. |
28 | MA J J, WEN J B, REN F Z, et al. Electrochemical performance of Al-Mg-Sn based alloys as anode for Al-air battery[J]. J Electrochem Soc, 2016, 163(8): A1759-A1764. |
29 | 王金涛, 段体岗, 郭建章, 等. 三维碳纤维基复合材料及其在海水溶解氧电池应用性能研究[J]. 材料导报, 2024, 38(4): 218-223. |
WANG J T, DUAN T G, GUO J Z, et al. Three-dimensional carbon fiber matrix composites and application performance in seawater dissolved oxygen batteries[J]. Mater Rep, 2024, 38(4): 218-223. | |
30 | KAEWMANEEKUL T, LOTHONGKUM G. Effect of aluminium on the passivation of zinc-aluminium alloys in artificial seawater at 80 ℃[J]. Corros Sci, 2013, 66: 67-77. |
31 | ZHU C, YANG H X, WU A Q, et al. Modified alkaline electrolyte with 8-hydroxyquinoline and ZnO complex additives to improve Al-air battery[J]. J Power Sources, 2019, 432: 55-64. |
32 | WU Z B, ZHANG H T, ZOU J, et al. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt.%) anode for Al-air battery by directional solidification technique and subsequent rolling process[J]. J Alloys Compd, 2020, 827: 154272. |
33 | WANG Q, MIAO H, XUE Y J, et al. Performances of an Al-0.15 Bi-0.15 Pb-0.035 Ga alloy as an anode for Al-air batteries in neutral and alkaline electrolytes[J]. RSC Adv, 2017, 7(42): 25838-25847. |
34 | 张一晗, 张海兵, 辛永磊, 等. Al-Zn-In-Mg-Ti-Ga-Mn牺牲阳极在极地低温环境中的电化学性能[J]. 中国有色金属学报, 2023, 33(4): 1209-1219. |
ZHANG Y H, ZHANG H B, XIN Y L, et al. Electrochemical performance of Al-Zn-ln-Mg-Ti-Ga-Mn sacrificial anode in polar low temperature environment[J]. Chin J Nonferrous Met, 2023, 33(4): 1209-1219. | |
35 | LI L, LIU H, YAN Y, et al. Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys[J]. Int J Hydrogen Energy, 2019, 44(23): 12073-12084. |
[1] | 张冬玉, 王春丽, 程勇, 王立民. 钠/钾离子电池用锑基负极研究进展:失效分析及解决方案[J]. 应用化学, 2024, 41(5): 616-636. |
[2] | 陈胜, 胡祖飞, 曹洪美, 赵振华, 张宇栋. 镁掺杂高镍三元正极材料LiNi0.90Co0.05Mn0.05O2的合成与性能[J]. 应用化学, 2024, 41(4): 568-576. |
[3] | 顾婷婷, 张科, 张心周, 刘阳, 孙伟才, 谭爱东, 刘建国. 质子交换膜电解池阳极钛基气体扩散层研究进展[J]. 应用化学, 2024, 41(3): 365-376. |
[4] | 石雪建, 刘万强, 王春丽, 程勇, 王立民. 钾离子电池用Sb基负极材料研究进展[J]. 应用化学, 2023, 40(2): 210-228. |
[5] | 孟君玲, 田川, 徐娜, 赵丽娜, 钟海霞, 徐占林. 固体氧化物燃料电池电极表面原位析出的研究进展[J]. 应用化学, 2023, 40(10): 1335-1346. |
[6] | 孟玉, 张晴, 彭文浩, 朱晓飞, 周德凤. Pr0.8Sr0.2Fe0.7Ni0.3O3-δ -Pr1.2Sr0.8Ni0.6Fe0.4O4+δ 复合阴极的制备及其电化学性能[J]. 应用化学, 2022, 39(5): 797-808. |
[7] | 吴小峰, 陈德顺, 马伟, 黄科科. 电喷雾沉积WO3/Fe2TiO5复合光阳极及其光电催化水裂解性能[J]. 应用化学, 2022, 39(4): 694-696. |
[8] | 唐雅薇, 徐兰兰, 刘孝娟. Co、Ni、Fe掺杂有效提升PrBaMn2O5+δ 阳极材料的催化活性[J]. 应用化学, 2022, 39(10): 1543-1553. |
[9] | 纪全增, 孟君玲, 王浩聪, 安涛, 刘孝娟, 孟健. La2CuO4阴极薄膜的相转变及其对电化学性能的影响[J]. 应用化学, 2021, 38(8): 976-985. |
[10] | 纪全增, 孟君玲, 王浩聪, 安涛, 刘孝娟, 孟健. La2CuO4阴极薄膜的相转变及其对电化学性能的影响[J]. 应用化学, 2021, 38(8): 0-0. |
[11] | 韩平,冯海涛,李玲,董亚萍,田森,张波,李波,李武. 高碳铬铁在氢氧化钠水溶液中电化学氧化过程[J]. 应用化学, 2020, 37(6): 709-718. |
[12] | 王春丽,孙连山,钟鸣,王立民,程勇. 过渡金属及其化合物应用于锂硫电池的研究进展[J]. 应用化学, 2020, 37(4): 387-404. |
[13] | 孙小彤,陈南,梁含雪,李增领,刘倩雯,曲良体. 阳极氧化铝模板限域制备一维杂化纳米材料及其多样化应用的研究进展[J]. 应用化学, 2020, 37(2): 123-133. |
[14] | 惠康龙, 傅继澎, 高湉, 唐明学. 金属硫化物在可充电电池中的研究进展[J]. 应用化学, 2020, 37(12): 1384-1402. |
[15] | 蔡敏, 吴春燕, 谢贻顺, 班贵, 赖飞燕, 黄小英, 张晓辉. 正硅酸乙酯对高电压镍锰酸锂基全电池电化学性能的影响[J]. 应用化学, 2020, 37(11): 1301-1308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||