应用化学 ›› 2024, Vol. 41 ›› Issue (9): 1227-1237.DOI: 10.19894/j.issn.1000-0518.240076
• 综合评述 •
收稿日期:
2024-03-15
接受日期:
2024-08-12
出版日期:
2024-09-01
发布日期:
2024-10-09
通讯作者:
王芳
基金资助:
Wei-Ke LIN, Ying XIANG, Fang WANG()
Received:
2024-03-15
Accepted:
2024-08-12
Published:
2024-09-01
Online:
2024-10-09
Contact:
Fang WANG
About author:
fangwangvip2017@163.comSupported by:
摘要:
采用光伏系统与电化学技术结合的方式不仅可以提高处理效率、减少能耗和降低运营成本,还有助于推动清洁能源在环境保护和水资源管理方面的应用,对实现可持续、高效的污水处理具有较好的应用前景。 本文阐述了太阳能光电转化在污水治理中的应用情况,综述了光电转化在电氧化系统、反渗透工艺、电混凝工艺、曝气设备、电絮凝技术及Fenton技术中的研究进展情况,并对今后太阳能应用污水治理的工作研究方向进行了展望。
中图分类号:
林韦珂, 向莹, 王芳. 基于太阳能光电转化的污水治理研究进展[J]. 应用化学, 2024, 41(9): 1227-1237.
Wei-Ke LIN, Ying XIANG, Fang WANG. Research Progress of Solar Photovoltaic Conversion in Wastewater Treatment[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1227-1237.
1 | 张治忠, 张青. 水污染分析与水环境保护策略分析[J]. 皮革制作与环保科技, 2023, 4(4): 81-83. |
ZHANG Z Z, ZHANG Q. Analysis of water pollution and analysis of water environment protection strategies[J]. Leather Mfg Environ Technol, 2023, 4(4): 81-83. | |
2 | CHALA G T, AL ALSHAIKH S M. Solar photovoltaic energy as a promising enhanced share of clean energy sources in the future-a comprehensive review[J]. Energies, 2023, 16(24): 7919. |
3 | ELFAQIH A K, ELBAZ A, AKASH Y M. A review of solar photovoltaic-powered water desalination technologies[J]. Sust Wat Resour Man, 2024, 10(3): 123. |
4 | ANAND B, SHANKAR R, MURUGAVELH S, et al. A review on solar photovoltaic thermal integrated desalination technologies[J]. Renew Sust Energy Rev, 2021, 141: 110787. |
5 | LIU G, ZHEN C, KANG Y Y, et al. Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis[J]. Chem Soc Rev, 2018, 47(16): 6410-6444. |
6 | 王熊祥. 光伏并网逆变器在光伏电站中的应用及其维护[J]. 光源与照明, 2021(4): 70-71. |
WANG X X. Application and maintenance of photovoltaic grid connected inverters in photovoltaic power stations[J]. Lamps Light, 2021(4): 70-71. | |
7 | 王革, 梁深, 马兴龙, 等. 太阳能聚光光伏-膜蒸馏海水淡化复合系统研究[J]. 太阳能学报, 2022, 43(11): 94-99. |
WANG G, LIANG S, MA X L, et al. Research on a solar concentrated photovoltaic membrane distillation seawater desalination composite system[J]. Acta Energy Sol Sin, 2022, 43(11): 94-99. | |
8 | GANIYU S O, MARTÍNEZ-HUITLE C A, RODRIGO M A. Renewable energies driven electrochemical wastewater/soil decontamination technologies: a critical review of fundamental concepts and applications[J]. Appl Catal B, 2020, 270: 118857. |
9 | BISWAS B, GOEL S. Electrocoagulation and electrooxidation technologies for pesticide removal from water or wastewater: a review[J]. Chemosphere, 2022, 302: 134709. |
10 | MILLÁN M, FERNÁNDEZ-MARCHANTE C M, LOBATO J, et al. Modelling of the treatment of wastewater by photovoltaic solar electrochemical oxidation (PSEO) assisted by redox-flow batteries[J]. J Water Process Eng, 2021, 40: 101974. |
11 | VALERO D, ORTIZ J M, EXPÓSITO E, et al. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater[J]. Environ Sci Technol, 2010, 44(13): 5182-5187. |
12 | DOMINGUEZ-RAMOS A, ALDACO R, IRABIEN A. Photovoltaic solar electrochemical oxidation (PSEO) for treatment of lignosulfonate wastewater[J]. J Chem Technol Biotechnol, 2010, 85(6): 821-830. |
13 | KARGI F. Comparison of different electrodes in hydrogen gas production from electrohydrolysis of wastewater organics using photovoltaic cells (PVC)[J]. Int J Hydrogen Energy, 2011, 36(5): 3450-3456. |
14 | SALMERÓN I, OLLER I, MALATO S. Electro-oxidation process assisted by solar energy for the treatment of wastewater with high salinity[J]. Sci Total Environ, 2020, 705: 135831. |
15 | SALMERÓN I, RIVAS G, OLLER I, et al. Nanofiltration retentate treatment from urban wastewater secondary effluent by solar electrochemical oxidation processes[J]. Sep Purif Technol, 2021, 254: 117614. |
16 | UDDIN S U, BAIG M J A, IQBAL M T. Design and implementation of an open-source SCADA system for a community solar-powered reverse osmosis system[J]. Sensors, 2022, 22(24): 9631. |
17 | JBARI Y, ABDERAFI S. Parametric study to enhance performance of wastewater treatment process, by reverse osmosis-photovoltaic system[J]. Appl Water Sci, 2020, 10(10): 1-14. |
18 | SUNDARAMOORTHY S, SRINIVASAN G, MURTHY D V R. An analytical model for spiral wound reverse osmosis membrane modules: part Ⅱ-experimental validation[J]. Desalination, 2011, 277(1/3): 257-264. |
19 | MA D X, WANG D L, WANG X H, et al. Efficient treatment of old landfill leachate by peroxodisulfate assisted electro-oxidation and electro-coagulation combined system[J]. Chemosphere, 2024, 346: 140675. |
20 | ZHAO M H, XU Y, ZHANG C S, et al. New trends in removing heavy metals from wastewater[J]. Appl Microbiol Biotechnol, 2016, 100(15): 6509-6518. |
21 | FEI Y H, HU Y H. Recent progress in removal of heavy metals from wastewater: a comprehensive review[J]. Chemosphere, 2023, 335: 139077. |
22 | BRILLAS E, MARTÍNEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. an updated review[J]. Appl Catal B, 2015, 166/167: 603-643. |
23 | DE JESUS E A, MENESES J M, DE ARAÚJO M A C, et al. Treatment of a textile wastewater using an electrocoagulation reactor powered by photovoltaic solar energy[J]. Environ Smoke, 2021, 4(2): 7-14. |
24 | ZHANG S X, YANG X H, CHENG Q P, et al. Treatment of wastewater containing nickel by electrocoagulation process using photovoltaic energy[J]. Environ Eng Sci, 2018, 35(5): 484-492. |
25 | 郭烨烨, 杨淑英, 黄莹, 等. 间歇曝气潜流人工湿地的污水脱氮效果[J]. 环境工程学报, 2014, 8(4): 1405-1409. |
GUO Y Y, YANG S Y, HUANG Y, et al. The denitrification effect of intermittent aeration subsurface flow constructed wetland on wastewater[J]. Chin J Environ Eng, 2014, 8(4): 1405-1409. | |
26 | TANG P, LI J L, LI T, et al. Efficient integrated module of gravity driven membrane filtration, solar aeration and GAC adsorption for pretreatment of shale gas wastewater[J]. J Hazards Maters, 2021, 405: 124166. |
27 | 刘亚君, 韩雪, 刘宏, 等. 曝气方式对人工湿地氮去除效果的影响研究[J]. 山东化工, 2017, 46(5): 152-154. |
LIU Y J, HAN X, LIU H, et al. Study on the effect of aeration methods on nitrogen removal in artificial wetlands[J]. Shandong Chem Ind, 2017, 46(5): 152-154. | |
28 | WANG Y Y, XU Z X. Solar-energy mobile water aerators are efficient for restoring eutrophic water[C]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2017, 52(1): 012082. |
29 | 汪健, 李怀正, 甄葆崇, 等. 间歇曝气对垂直潜流人工湿地脱氮效果的影响[J]. 环境科学, 2016, 37(3): 980-987. |
WANG J, LI H Z, ZHEN B C, et al. The effect of intermittent aeration on nitrogen removal efficiency in vertical subsurface flow constructed wetlands[J]. Environ Sci, 2016, 37(3): 980-987. | |
30 | 张月强, 刘艳军, 于成鹏, 等. 太阳能曝气净化槽处理农村生活污水的运行及研究[J]. 安徽农业科学, 2021, 49(22): 213-216. |
ZHANG Y Q, LIU Y J, YU C P, et al. Operation and research on solar aeration purification tank for rural domestic wastewater treatment[J]. J Anhui Agric Sci, 2021, 49(22): 213-216 | |
31 | 楼佳俊. 太阳能微曝气人工湿地组合工艺处理污水的效能研究[D]. 杭州: 浙江工业大学, 2015. |
LOU J J. Research on the efficiency of solar microaeration artificial wetland combination process for wastewater treatment[D]. Hangzhou : Zhejiang University of Technology, 2015. | |
32 | 吴薇, 陈树磊, 刘建华, 等. 太阳能曝气强化人工湿地对养猪废水的净化效果[J]. 安徽农业科学, 2019, 47(12): 67-69. |
WU W, CHEN S L, LIU J H, et al. The purification effect of solar aeration enhanced artificial wetland on pig wastewater[J]. J Anhui Agric Sci, 2019, 47(12): 67-69. | |
33 | MIRZAEI M, MOAZENI K, BAGHDADI M, et al. A hybrid process of electrocoagulation and electro-Fenton for treatment of paper wastewater[J]. Int J Environ Sci Te, 2024: 1-11. |
34 | PINEDO-HERNÁNDEZ J, MARRUGO-NEGRETE J, PÉREZ-ESPITIA M, et al. A pilot-scale electrocoagulation-treatment wetland system for the treatment of landfill leachate[J]. J Environ Manage, 2024, 351: 119681. |
35 | HADIKHANI R, KARBASSI A, TAJZIEHCHI S, et al. Mechanisms and controlling factors of heavy metals removal by electroflocculation in estuarine environments[J]. Mar Pollut Bull, 2024, 206: 116699. |
36 | 王一茹, 宋小三, 王三反, 等. 太阳能电絮凝技术在水处理中的研究进展[J]. 化工进展, 2021, 40(S2): 373-379. |
WANG Y R, SONG X S, WANG S F, et al. Research progress of solar electrocoagulation technology in water treatment[J]. Chem Ind Eng Prog, 2021, 40(S2): 373-379. | |
37 | VALERO D, ORTIZ J M, EXPOSITO E, et al. Electrocoagulation of a synthetic textile effluent powered by photovoltaic energy without batteries: direct connection behaviour[J]. Sol Energy Mater Sol Cells, 2008, 92(3): 291-297. |
38 | MUNIASAMY S K, GAMEDA T T, MALLAIAN L S, et al. Investigation on solar-powered electrocoagulation (SPEC) for the treatment of domestic wastewater (DWW)[J]. Adv Mater Sci Eng, 2022, 2022(1): 5389340. |
39 | HUSSIN F, ABNISA F, ISSABAYEVA G, et al. Removal of lead by solar-photovoltaic electrocoagulation using novel perforated zinc electrode[J]. J Cleaner Prod, 2017, 147: 206-216. |
40 | MOHAMAD H A E D, HEMDAN M, BASTAWISSI A A E, et al. Industrial wastewater treatment by electrocoagulation powered by a solar photovoltaic system[J]. Energy Source, Part A, 2021: 1-12. |
41 | KARMANKAR S B, SHARMA A, AHIRWAR R C, et al. Cost cutting approach of distillery effluent treatment using solar photovoltaic cell driven electrocoagulation: comparison with conventional electrocoagulation[J]. J Water Process Eng, 2023, 54: 103982. |
42 | ST-ONGE J, CARABIN A, DIA O, et al. Development of a solar electrocoagulation technology for decentralised water treatment[J]. P I Civil Eng-Wat M, 2020, 173(1): 46-52. |
43 | NAWARKAR C J, SALKAR V D. Solar powered electrocoagulation system for municipal wastewater treatment[J]. Fuel, 2019, 237: 222-226. |
44 | MOHAMAD Z, RAZAK A A, KRISHNAN S, et al. Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system[J]. Chem Eng Res Des, 2022, 177: 578-582. |
45 | ZÁRATE-GUZMÁN A I, WARREN-VEGA W M, ROMERO-CANO L A, et al. Scale-up Fenton process:study and optimization in piggery wastewater treatment[J]. J Chem Technol Biotechnol, 2020, 96(2): 341-348. |
46 | CHEN X L, ZHAO G N, YANG Z W, et al. Molecular comparison of organic matter removal from shale gas flowback wastewater: ozonation versus Fenton process[J]. Sci Total Environ, 2023, 905: 167147. |
47 | GILPAVAS E, DOBROSZ-GÓMEZ I, GÓMEZ-GARCÍA M Á. Optimization of solar-driven photo-electro-Fenton process for the treatment of textile industrial wastewater[J]. J Water Process Eng, 2018, 24: 49-55. |
48 | DOS SANTOS P R, DE OLIVEIRA DOURADOS M E, SIRÉS I, et al. Greywater treatment by anodic oxidation,photoelectro-Fenton and solar photoelectro-Fenton processes: influence of relevant parameters and toxicity evolution[J]. Process Saf Environ Prot, 2023, 169: 879-895. |
49 | KHALEEL G F, ISMAIL I, ABBAR A H. Application of solar photo-electro-Fenton technology to petroleumrefinery wastewater degradation: optimization of operational parameters[J]. Heliyon, 2023, 9(4): e15062. |
50 | LOUHICHI B, GAIED F, MANSOURI K, et al. Treatment of textile industry effluents by electro-coagulation and electro-Fenton processes using solar energy: a comparative study[J]. Chem Eng J, 2022, 427: 131735. |
51 | SASSON M B, CALMANO W, ADIN A. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell[J]. J Hazard Mater, 2009, 171(1/3): 704-709. |
[1] | 王瑶瑶, 孙铭阳, 杨钻, 杜绍恺, 何禹璇, 孙越. 基于柔性电极和信号放大技术构建检测磷脂酶C的电化学传感器[J]. 应用化学, 2024, 41(7): 987-997. |
[2] | 李英维, 韩吉, 关卜源. 二维介孔材料的合成方法、设计与应用研究进展[J]. 应用化学, 2024, 41(6): 767-782. |
[3] | 王元, 李焕荣. 二元离子型配合物Eu(HFA)4TPP掺杂PMMA薄膜的合成及性能[J]. 应用化学, 2024, 41(5): 607-615. |
[4] | 张冬玉, 王春丽, 程勇, 王立民. 钠/钾离子电池用锑基负极研究进展:失效分析及解决方案[J]. 应用化学, 2024, 41(5): 616-636. |
[5] | 吴厚燃, 侯春明, 段体岗, 马力, 张海兵, 王金涛. Al-Ga-In-Sn-Si合金阳极及海水溶解氧电池的电化学性能[J]. 应用化学, 2024, 41(5): 703-711. |
[6] | 陈胜, 胡祖飞, 曹洪美, 赵振华, 张宇栋. 镁掺杂高镍三元正极材料LiNi0.90Co0.05Mn0.05O2的合成与性能[J]. 应用化学, 2024, 41(4): 568-576. |
[7] | 杨翠翠, 叶晓雪. 基于小分子识别的光电化学传感器用于组氨酸检测[J]. 应用化学, 2024, 41(1): 128-136. |
[8] | 刘凌波, 李双, 吴康兵. 激光雕刻石墨烯阵列电极测定曲美他嗪[J]. 应用化学, 2024, 41(1): 147-155. |
[9] | 姚春莹, 朱晓艳, 刘艳玲. 三维葡萄糖电化学传感器与胶原水凝胶集成实时监测细胞代谢[J]. 应用化学, 2024, 41(1): 156-163. |
[10] | 罗二桂, 唐涛, 王艺, 张俊明, 常宇虹, 胡天军, 贾建峰. 两电子氧还原制备过氧化氢:贵金属催化剂的几何与电子结构调控的研究进展[J]. 应用化学, 2023, 40(8): 1063-1076. |
[11] | 尹春, 李家欣, 冯立纲. 浅析尿素电解制氢及尿素燃料电池研究进展[J]. 应用化学, 2023, 40(8): 1158-1174. |
[12] | 熊兴泉, 张辉, 高利柱. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819. |
[13] | 朱凤, 彭小连, 张文彬. 质子给受体对电催化反应影响的研究进展[J]. 应用化学, 2023, 40(5): 666-680. |
[14] | 刘明言, 石秀顶, 李天国, 王静. 电化学分析方法检测重金属离子研究进展[J]. 应用化学, 2023, 40(4): 463-475. |
[15] | 周锐, 张自品. 生物样品中小檗碱的电化学分析新方法[J]. 应用化学, 2023, 40(4): 518-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||