应用化学 ›› 2024, Vol. 41 ›› Issue (12): 1679-1696.DOI: 10.19894/j.issn.1000-0518.240348
• 综合评述 • 下一篇
收稿日期:
2024-11-01
接受日期:
2024-11-14
出版日期:
2024-12-01
发布日期:
2025-01-02
通讯作者:
孙雅彬
基金资助:
Shuang LIU, Si-Ying TENG, Peng HUI, Ya-Bin SUN()
Received:
2024-11-01
Accepted:
2024-11-14
Published:
2024-12-01
Online:
2025-01-02
Contact:
Ya-Bin SUN
About author:
yabin@jlu.edu.cnSupported by:
摘要:
适量活性氧(ROS)在调节生物体的多种生理功能中扮演着关键角色。 ROS含量的增加可能会导致氧化应激和生物分子损伤,从而导致各种疾病。 由于长期暴露在光线下,具有高代谢活性的眼睛尤其容易受到氧化应激影响,与多种眼部疾病的发生和发展息息相关。 因此,清除ROS维持氧化还原稳态至关重要。 随着纳米技术的进步,具有类酶活性的纳米酶,如过氧化氢酶(CAT)、超氧化物歧化酶(SOD)等,因具有稳定性好、易于制备和生物相容性好等优点,在调节氧化还原稳态、缓解ROS相关损伤等领域受到了广泛关注。 在本综述中,系统地总结了ROS与眼部疾病的关系、纳米酶在眼部疾病治疗中的研究进展,以及未来临床转化中存在的挑战和难题。
中图分类号:
刘爽, 滕思莹, 惠鹏, 孙雅彬. 纳米酶在眼部疾病治疗中的研究进展[J]. 应用化学, 2024, 41(12): 1679-1696.
Shuang LIU, Si-Ying TENG, Peng HUI, Ya-Bin SUN. Research Progress on Nanozymes in the Treatment of Ophthalmic Diseases[J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1679-1696.
图2 (A)双原子纳米酶合成示意图以及通过抑制NLPR3炎症小体激活打破DED恶性循环[66]; (B) Cs@P/CeO2抑制细胞ROS的产生,下调炎症过程并使巨噬细胞复极化[68]; (C) Ce@PBD合成示意图以及作用机制,清除过量积累的ROS,并可恢复泪膜[75]; (D) PBnZ纳米酶滴眼液合成示意图以及可通过增加角膜停留时间并持续清除ROS缓解DED[77]; (E) C-dots@Gel合成示意图以及通过稳定泪膜、延长泪液分泌、修复角膜表面损伤和增加结膜杯状细胞群来有效缓解DED[79]
Fig.2 (A) Illustrative representation of the synthesis of dual-atom nanozyme and disrupting the detrimental cycle of DED through the suppression of NLPR3 inflammasome activation[66]; (B) Cs@P/CeO2 inhibits the production of ROS in cells, downregulates inflammatory processes, and induces polarization of macrophages[68]; (C) A schematic representation of the synthesis of Ce@PBD and the mechanism of action, which clears excessively accumulated ROS and can restore the tear film[75]; (D) Schematic representation of the synthesis process for PBnZ nanozyme-based eye drops, which can alleviate DED by increasing the time of corneal residence and continuously clearing ROS[77]; (E) Illustrative representation of the synthesis of C-dots@Gel, which efficiently alleviates DED by maintaining the stability of the tear film, prolonging the secretion of tears, restoring the corneal surface integrity, and increasing the cup-shaped cell group of the conjunctiva[79]
图3 (A) Fe-Quer NZs的制备过程以及所合成的多功能纳米酶具有出色的水溶性和高效的清除ROS的能力,以及抗微血管渗漏、微血管瘤和抗血管生成作用[80]; (B)Pt NPs降低氧化应激和炎症反应,增加视网膜中的视杆细胞和视锥细胞光感受器(PRs)的存活[81]
Fig.3 (A) The preparation process of Fe-Quer NZs and the synthesized multifunctional nanozymes have excellent water solubility and high efficiency in clearing ROS and anti-vascular permeability, microvascular hemangioma and anti-angiogenesis effects[80]; (B) Pt NPs reduce oxidative stress and inflammatory responses, and increase the survival of rod and cone photoreceptors (PRs)[81]
图4 (A) Fe-姜黄素纳米酶合成示意图以及下调IFN-γ、IL-17和TNF-α炎症因子的水平,抑制Th1和Th17细胞的增殖[87]; (B) CX3CL1@PEI-PBA-HA/CeNPs合成示意图以及递送CX3CL1/CeNPs功能分子协同调节炎症和免疫微环境[92]
Fig.4 (A) Figure illustrating the synthesis of Fe-curcumin nanozyme and downregulation of inflammatory factors including IFN-γ, IL-17, and TNF-α, as well as inhibition of Th1 and Th17 cell proliferation[87]; (B) Schematic illustration of the synthesis of CX3CL1@PEI-PBA-HA/CeNPs and delivering functional molecules of CX3CL1/CeNPs for coordinated regulation of inflammation and the immune microenvironment[92]
图5 MGMN合成示意图以及用于治疗感染性角膜炎。 根除细菌和真菌并调节过度炎症反应。利用SOD-CAT级联反应将过量的ROS转化为氧气,从而缓解缺氧并促进上皮损伤修复[98]
Fig.5 A schematic diagram of the synthesis of MGMN, employed in the management of infectious keratitis. The elimination of microorganisms including bacteria and fungi, and the regulation of overactive inflammatory reactions. The cascade reaction involving SOD and CAT is used to transform surplus ROS into oxygen, thus relieving hypoxic conditions and facilitating the repair of epithelial tissue[98]
图6 (A)Pd纳米晶处理机制模式图,减少暴露于缺氧的HSF中的氧化应激,调节Nrf-2/Ho-1信号通路,阻止Col-1氧化降解[116]; (B) Cu MOF纳米酶合成以及治疗化学角膜烧伤的模式图[119]
Fig.6 (A) A diagram illustrating the mechanism of treatment using Pd nanocrystals, Pd nanocrystals reduce oxidative stress in HSF exposed to hypoxia, regulate the Nrf-2/Ho-1 signaling pathway, and prevent Col-1 oxidative degradation[116]; (B) A schematic diagram of the synthesis of Cu MOF nanozymes and its application in treating chemical corneal burns[119]
图7 缺氧诱导的视网膜新生血管疾病的示意图及Pt@MitoLipo纳米酶靶向线粒体ROS清除和缺氧缓解用于视网膜新生血管疾病治疗[124]
Fig.7 A diagrammatic representation of retinal neovascularization disease caused by hypoxia, along with the application of Pt@MitoLipo nanozymes for targeted scavenging of mitochondrial ROS and alleviation of hypoxia in the treatment of retinal neovascular diseases[124]
1 | WU J, WANG X, WANG Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes(Ⅱ)[J]. Chem Soc Rev, 2019, 48(4): 1004-1076. |
2 | JIANG D, NI D, ROSENKRANS Z T, et al. Nanozyme: new horizons for responsive biomedical applications[J]. Chem Soc Rev, 2019, 48(14): 3683-3704. |
3 | BUCKLEY R J. Assessment and management of dry eye disease[J]. Eye, 2018, 32(2): 200-203. |
4 | POPRAC P, JOMOVA K, SIMUNKOVA M, et al. Targeting free radicals in oxidative stress-related human diseases[J]. Trends Pharmacol Sci, 2017, 38(7): 592-607. |
5 | LUSHCHAK V I. Classification of oxidative stress based on its intensity[J]. Excli J, 2014, 13: 922-937. |
6 | BRIEGER K, SCHIAVONE S, MILLER F J, et al. Reactive oxygen species: from health to disease[J]. Swiss Med Wkly, 2012, 142: w13659. |
7 | FÖRSTERMANN U, XIA N, LI H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis[J]. Circ Res, 2017, 120(4): 713-735. |
8 | KUNTIC M, KUNTIC I, KRISHNANKUTTY R, et al. Co-exposure to urban particulate matter and aircraft noise adversely impacts the cerebro-pulmonary-cardiovascular axis in mice[J]. Redox Biol, 2023, 59: 102580. |
9 | HAHAD O, KUNTIC M, KUNTIC I, et al. Tobacco smoking and vascular biology and function: evidence from human studies[J]. Pflugers Arch, 2023, 475(7): 797-805. |
10 | GUO C, NING X, ZHANG J, et al. Ultraviolet B radiation induces oxidative stress and apoptosis in human lens epithelium cells by activating NF-κB signaling to down-regulate sodium vitamin C transporter 2 (SVCT2) expression[J]. Cell Cycle, 2023, 22(12): 1450-1462. |
11 | BAYO JIMENEZ M T, GERICKE A, FRENIS K, et al. Effects of aircraft noise cessation on blood pressure, cardio- and cerebrovascular endothelial function, oxidative stress, and inflammation in an experimental animal model[J]. Sci Total Environ, 2023, 903: 166106. |
12 | FOREMAN J, DEMIDCHIK V, BOTHWELL J H, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J]. Nature, 2003, 422(6930): 442-446. |
13 | NIETHAMMER P, GRABHER C, LOOK A T, et al. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish[J]. Nature, 2009, 459(7249): 996-999. |
14 | RUAN Y, JIANG S, MUSAYEVA A, et al. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies[J]. Antioxidants, 2020, 9(8): 761. |
15 | HSUEH Y J, CHEN Y N, TSAO Y T, et al. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases[J]. Int J Mol Sci, 2022, 23(3): 1255. |
16 | VALLABH N A, ROMANO V, WILLOUGHBY C E. Mitochondrial dysfunction and oxidative stress in corneal disease[J]. Mitochondrion, 2017, 36: 103-113. |
17 | TAURONE S, RALLI M, ARTICO M, et al. Oxidative stress and visual system: a review[J]. Excli J, 2022, 21: 544-553. |
18 | INCALZA M A, D'ORIA R, NATALICCHIO A, et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases[J]. Vasc Pharmacol, 2018, 100: 1-19. |
19 | PETRO M, JAFFER H, YANG J, et al. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain[J]. Biomaterials, 2016, 81: 169-180. |
20 | WU G, BERKA V, DERRY P J, et al. Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements[J]. ACS Nano, 2019, 13(10): 11203-11213. |
21 | GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nat Nanotechnol, 2007, 2(9): 577-583. |
22 | ASATI A, SANTRA S, KAITTANIS C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles[J]. Angew Chem Int Ed Engl, 2009, 48(13): 2308-2312. |
23 | ZHANG Y, MA S, CHANG W, et al. Nanozymes targeting mitochondrial repair in disease treatment[J]. J Biotechnol, 2024, 394: 57-72. |
24 | XU D, WU L, YAO H, et al. Catalase-like nanozymes: classification, catalytic mechanisms, and their applications[J]. Small, 2022, 18(37): e2203400. |
25 | LIN Y, REN J, QU X. Nano-gold as artificial enzymes: hidden talents[J]. Adv Mater, 2014, 26(25): 4200-4217. |
26 | HE W, ZHOU Y T, WAMER W G, et al. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles[J]. Biomaterials, 2012, 33(30): 7547-7555. |
27 | PEDONE D, MOGLIANETTI M, DE LUCA E, et al. Platinum nanoparticles in nanobiomedicine[J]. Chem Soc Rev, 2017, 46(16): 4951-4975. |
28 | GE C, FANG G, SHEN X, et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage[J]. ACS Nano, 2016, 10(11): 10436-10445. |
29 | SINGH N, SAVANUR M A, SRIVASTAVA S, et al. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a parkinson's disease model[J]. Angew Chem Int Ed Engl, 2017, 56(45): 14267-14271. |
30 | CHEN Z, YIN J J, ZHOU Y T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity[J]. ACS Nano, 2012, 6(5): 4001-4012. |
31 | LEE J, LIAO H, WANG Q, et al. Exploration of nanozymes in viral diagnosis and therapy[J]. Exploration, 2022, 2(1): 20210086. |
32 | DENG H H, LIN X L, LIU Y H, et al. Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase[J]. Nanoscale, 2017, 9(29): 10292-10300. |
33 | FAN D, SHANG C, GU W, et al. Introducing ratiometric fluorescence to MnO2 nanosheet-based biosensing: a simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection[J]. ACS Appl Mater Interfaces, 2017, 9(31): 25870-25877. |
34 | YANG H, XIAO J, SU L, et al. Oxidase-mimicking activity of the nitrogen-doped Fe3C@C composites[J]. Chem Commun, 2017, 53(27): 3882-3885. |
35 | COMOTTI M, DELLA PINA C, MATARRESE R, et al. The catalytic activity of “naked” gold particles[J]. Angew Chem Int Ed Engl, 2004, 43(43): 5812-5815. |
36 | RAGG R, NATALIO F, TAHIR M N, et al. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity[J]. ACS Nano, 2014, 8(5): 5182-5189. |
37 | XI J, WEI G, AN L, et al. Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy[J]. Nano Lett, 2019, 19(11): 7645-7654. |
38 | CHEN M, WANG Z, SHU J, et al. Mimicking a natural enzyme system: cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c[J]. Inorg Chem, 2017, 56(16): 9400-9403. |
39 | THANGUDU S, SU C H. Peroxidase mimetic nanozymes in cancer phototherapy: progress and perspectives[J]. Biomolecules, 2021, 11(7): 1015. |
40 | YE H, YANG K, TAO J, et al. An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers[J]. ACS Nano, 2017, 11(2): 2052-2059. |
41 | ZHANG W, HU S, YIN J J, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers[J]. J Am Chem Soc, 2016, 138(18): 5860-5865. |
42 | ZHANG T, CAO C, TANG X, et al. Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles[J]. Nanotechnol, 2017, 28(4): 045704. |
43 | WANG Y, LI H, GUO L, et al. A cobalt-doped iron oxide nanozyme as a highly active peroxidase for renal tumor catalytic therapy[J]. RSC Adv, 2019, 9(33): 18815-18822. |
44 | PEI J, PAN X, WEI G, et al. Research progress of glutathione peroxidase family (GPX) in redoxidation[J]. Front Pharmacol, 2023, 14: 1147414. |
45 | SINGH N, GEETHIKA M, ESWARAPPA S M, et al. Manganese-based nanozymes: multienzyme redox activity and effect on the nitric oxide produced by endothelial nitric oxide synthase[J]. Chem, 2018, 24(33): 8393-8403. |
46 | LAI Y, WANG J, YUE N, et al. Glutathione peroxidase-like nanozymes: mechanism, classification, and bioapplication[J]. Biomater Sci, 2023, 11(7): 2292-2316. |
47 | FAN K, XI J, FAN L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy[J]. Nat Commun, 2018, 9(1): 1440. |
48 | SAMUEL E L, MARCANO D C, BERKA V, et al. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters[J]. Proc Natl Acad Sci U S A, 2015, 112(8): 2343-2348. |
49 | CASALS E, ZENG M, PARRA-ROBERT M, et al. Cerium oxide nanoparticles: advances in biodistribution, toxicity, and preclinical exploration[J]. Small, 2020, 16(20): e1907322. |
50 | ZHAO H, ZHANG R, YAN X, et al. Superoxide dismutase nanozymes: an emerging star for anti-oxidation[J]. J Mater Chem B, 2021, 9(35): 6939-6957. |
51 | CHEN T, LU Y, XIONG X, et al. Hydrolytic nanozymes: preparation, properties, and applications[J]. Adv Colloid Interface Sci, 2024, 323: 103072. |
52 | WU Y, CHEN W, WANG C, et al. Overview of nanozymes with phosphatase-like activity[J]. Biosens Bioelectron, 2023, 237: 115470. |
53 | XU F, LU Q, HUANG P J, et al. Nanoceria as a DNase I mimicking nanozyme[J]. Chem Commun (Camb), 2019, 55(88): 13215-13218. |
54 | LV W, YUAN X, YAN C, et al. Dual-readout performance of Eu3+-doped nanoceria as a phosphatase mimic for degradation and detection of organophosphate[J]. Anal Methods, 2021, 13(40): 4747-4755. |
55 | YANG J, LI K, LI C, et al. Intrinsic apyrase-like activity of cerium-based metal-organic frameworks (MOFs): dephosphorylation of adenosine tri- and diphosphate[J]. Angew Chem Int Ed Engl, 2020, 59(51): 22952-22956. |
56 | JIN H, YE D, SHEN L, et al. Perspective for single atom nanozymes based sensors: advanced materials, sensing mechanism, selectivity regulation, and applications[J]. Anal Chem, 2022, 94(3): 1499-1509. |
57 | AZAMBUJA F, MOONS J, PARAC-VOGT T N. The dawn of metal-oxo clusters as artificial proteases: from discovery to the present and beyond[J]. Acc Chem Res, 2021, 54(7): 1673-1684. |
58 | TIAN Z, YAO T, QU C, et al. Photolyase-like catalytic behavior of CeO2[J]. Nano Lett, 2019, 19(11): 8270-8277. |
59 | LI F, LI S, GUO X, et al. Chiral carbon dots mimicking topoisomerase Ⅰ to mediate the topological rearrangement of supercoiled DNA enantioselectively[J]. Angew Chem Int Ed Engl, 2020, 59(27): 11087-11092. |
60 | GAUDANA R, ANANTHULA H K, PARENKY A, et al. Ocular drug delivery[J]. Aaps J, 2010, 12(3): 348-360. |
61 | BACHU R D, CHOWDHURY P, AL-SAEDI Z H F, et al. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases[J]. Pharmaceutics, 2018, 10(1): 28. |
62 | TAVAKOLI S, PEYNSHAERT K, LAJUNEN T, et al. Ocular barriers to retinal delivery of intravitreal liposomes: impact of vitreoretinal interface[J]. J Control Release, 2020, 328: 952-961. |
63 | CLAYTON J A. Dry eye[J]. N Engl J Med, 2018, 378(23): 2212-2223. |
64 | PFLUGFELDER S C, DE PAIVA C S. The pathophysiology of dry eye disease: what we know and future directions for research[J]. Ophthalmol, 2017, 124(11S): S4-S13. |
65 | OUYANG W, WANG S, YAN D, et al. The cGAS-STING pathway-dependent sensing of mitochondrial DNA mediates ocular surface inflammation[J]. Signal Transduct Target Ther, 2023, 8(1): 371. |
66 | CHU D, ZHAO M, RONG S, et al. Dual-atom nanozyme eye drops attenuate inflammation and break the vicious cycle in dry eye disease[J]. Nanomicro Lett, 2024, 16(1): 120. |
67 | LV Z, LI S, ZENG G, et al. Recent progress of nanomedicine in managing dry eye disease[J]. Adv Ophthalmol Pract Res, 2024, 4(1): 23-31. |
68 | CUI W, CHEN S, HU T, et al. Nanoceria-mediated cyclosporin a delivery for dry eye disease management through modulating immune-epithelial crosstalk[J]. ACS Nano, 2024, 18(17): 11084-11102. |
69 | LUO L J, NGUYEN D D, LAI J Y. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease[J]. Mater Sci Eng C Mater Biol Appl, 2020, 115: 111095. |
70 | LU Y, WU F, DUAN W, et al. Engineering a “PEG-g-PEI/DNA nanoparticle-in- PLGA microsphere” hybrid controlled release system to enhance immunogenicity of DNA vaccine[J]. Mater Sci Eng C Mater Biol Appl, 2020, 106: 110294. |
71 | ZOU H, WANG H, XU B, et al. Regenerative cerium oxide nanozymes alleviate oxidative stress for efficient dry eye disease treatment[J]. Regen Biomater, 2022, 9: rbac070. |
72 | ZOU H, HONG Y, XU B, et al. Multifunctional cerium oxide nanozymes with high ocular surface retention for dry eye disease treatment achieved by restoring redox balance[J]. Acta Biomater, 2024, 185: 441-455. |
73 | KAWAHARA A. Treatment of dry eye disease (DED) in Asia: strategies for short tear film breakup time-type DED[J]. Pharmaceutics, 2023, 15(11): 2591. |
74 | MOHAMED H B, ABD EL-HAMID B N, FATHALLA D, et al. Current trends in pharmaceutical treatment of dry eye disease: a review[J]. Eur J Pharm Sci, 2022, 175: 106206. |
75 | ZOU H, HONG Y, XU B, et al. Multifunctional cerium oxide nanozyme for synergistic dry eye disease therapy[J]. ACS Appl Mater Interfaces, 2024, 16(27): 34757-34771. |
76 | ZHAO Y, WANG D, QIAN T, et al. Biomimetic nanozyme-decorated hydrogels with H2O2-activated oxygenation for modulating immune microenvironment in diabetic wound[J]. ACS Nano, 2023, 17(17): 16854-16869. |
77 | ZHANG W, ZHAO M, CHU D, et al. Dual-ROS-scavenging and dual-lingering nanozyme-based eye drops alleviate dry eye disease[J]. J Nanobiotechnol, 2024, 22(1): 229. |
78 | LIN P H, JIAN H J, LI Y J, et al. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels[J]. Acta Biomater, 2022, 141: 140-150. |
79 | WEI W, CAO H, SHEN D, et al. Antioxidant carbon dots nanozyme loaded in thermosensitive in situ hydrogel system for efficient dry eye disease treatment[J]. Int J Nanomed, 2024, 19: 4045-4060. |
80 | GUI S, TANG W, HUANG Z, et al. Ultrasmall coordination polymer nanodots Fe-Quer nanozymes for preventing and delaying the development and progression of diabetic retinopathy[J]. Adv Funct Mater, 2023, 33(36): 2300261. |
81 | CUPINI S, DI MARCO S, BOSELLI L, et al. Platinum nanozymes counteract photoreceptor degeneration and retina inflammation in a light-damage model of age-related macular degeneration[J]. ACS Nano, 2023, 17(22): 22800-22820. |
82 | SHIN C S, VEETTIL R A, SAKTHIVEL T S, et al. Noninvasive delivery of self-regenerating cerium oxide nanoparticles to modulate oxidative stress in the retina[J]. ACS Appl Bio Mater, 2022, 5(12): 5816-5825. |
83 | BERLINBERG E J, GONZALES J A, DOAN T, et al. Association between noninfectious uveitis and psychological stress[J]. JAMA Ophthalmol, 2019, 137(2): 199-205. |
84 | CHEN S J, LIN T B, PENG H Y, et al. Protective effects of fucoxanthin dampen pathogen-associated molecular pattern (PAMP) lipopolysaccharide-induced inflammatory action and elevated intraocular pressure by activating Nrf2 signaling and generating reactive oxygen species[J]. Antioxidants, 2021, 10(7): 1092. |
85 | EMMI G, BETTIOL A, NICCOLAI E, et al. Butyrate-rich diets improve redox status and fibrin lysis in behçet's syndrome[J]. Circ Res, 2021, 128(2): 278-280. |
86 | UNG L, PATTAMATTA U, CARNT N, et al. Oxidative stress and reactive oxygen species: a review of their role in ocular disease[J]. Clin Sci, 2017, 131(24): 2865-2883. |
87 | JIANG Z, LIANG K, GAO X, et al. Fe-curcumin nanozyme-mediated immunosuppression and anti-inflammation in experimental autoimmune uveitis[J]. Biomater Res, 2023, 27(1): 131. |
88 | KIM Y E, CHOI S W, KIM M K, et al. Therapeutic hydrogel patch to treat atopic dermatitis by regulating oxidative stress[J]. Nano Lett, 2022, 22(5): 2038-2047. |
89 | SHI X, ZHOU H, WEI J, et al. The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases[J]. Redox Biol, 2022, 58: 102553. |
90 | NELSON B C, JOHNSON M E, WALKER M L, et al. Antioxidant cerium oxide nanoparticles in biology and medicine[J]. Antioxidants, 2016, 5(2):15. |
91 | MITRA R N, GAO R, ZHENG M, et al. Glycol chitosan engineered autoregenerative antioxidant significantly attenuates pathological damages in models of age-related macular degeneration[J]. ACS Nano, 2017, 11(5): 4669-4685. |
92 | JIN Y, CAI D, MO L, et al. Multifunctional nanogel loaded with cerium oxide nanozyme and CX3CL1 protein: targeted immunomodulation and retinal protection in uveitis rat model[J]. Biomaterials, 2024, 309: 122617. |
93 | CABRERA-AGUAS M, KHOO P, WATSON S L. Infectious keratitis: a review[J]. Clin Exp Ophthalmol, 2022, 50(5): 543-562. |
94 | SHARMA N, BAGGA B, SINGHAL D, et al. Fungal keratitis: a review of clinical presentations, treatment strategies and outcomes[J]. Ocul Surf, 2022, 24: 22-30. |
95 | CHEN K, LI Y, ZHANG X, et al. The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates[J]. Cell Death Dis, 2022, 13(5): 513. |
96 | TANG M, ZHANG Z, SUN T, et al. Manganese-based nanozymes: preparation, catalytic mechanisms, and biomedical applications[J]. Adv Healthc Mater, 2022, 11(21): e2201733. |
97 | LI Y, XU L, LIU H, et al. Graphdiyne and graphyne: from theoretical predictions to practical construction[J]. Chem Soc Rev, 2014, 43(8): 2572-2586. |
98 | LIU S, BAI Q, JIANG Y, et al. Multienzyme-like nanozyme encapsulated ocular microneedles for keratitis treatment[J]. Small, 2024, 20(21): e2308403. |
99 | CABRERA-AGUAS M, KHOO P, GEORGE C R R, et al. Antimicrobial resistance trends in bacterial keratitis over 5 years in Sydney, Australia[J]. Clin Exp Ophthalmol, 2020, 48(2): 183-191. |
100 | BAKKEREN E, DIARD M, HARDT W D. Evolutionary causes and consequences of bacterial antibiotic persistence[J]. Nat Rev Microbiol, 2020, 18(9): 479-490. |
101 | GENG X, ZHANG N, LI Z, et al. Iron-doped nanozymes with spontaneous peroxidase-mimic activity as a promising antibacterial therapy for bacterial keratitis[J]. Smart Med, 2024, 3(2): e20240004. |
102 | LIU Z, CHEN D, CHEN X, et al. Trehalose induces autophagy against inflammation by activating TFEB signaling pathway in human corneal epithelial cells exposed to hyperosmotic stress[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 26. |
103 | WANG H, SONG F, FENG J, et al. Tannin coordinated nanozyme composite-based hybrid hydrogel eye drops for prophylactic treatment of multidrug-resistant Pseudomonas aeruginosa keratitis[J]. J Nanobiotechnol, 2022, 20(1): 445. |
104 | MAHMOUDI S, MASOOMI A, AHMADIKIA K, et al. Fungal keratitis: an overview of clinical and laboratory aspects[J]. Mycoses, 2018, 61(12): 916-930. |
105 | GU L, LIN J, WANG Q, et al. Dimethyl fumarate ameliorates fungal keratitis by limiting fungal growth and inhibiting pyroptosis[J]. Int Immunopharmacol, 2023, 115: 109721. |
106 | DONG L, FAN Z, FANG B, et al. Oriented cellulose hydrogel: directed tissue regeneration for reducing corneal leukoplakia and managing fungal corneal ulcers[J]. Bioact Mater, 2024, 41: 15-29. |
107 | WANG H, SONG F, QI X, et al. Penetrative ionic organic molecular cage nanozyme for the targeted treatment of keratomycosis[J]. Adv Healthc Mater, 2024, 13(26): e2401179. |
108 | JAGER M J, SHIELDS C L, CEBULLA C M, et al. Uveal melanoma[J]. Nat Rev Dis Primers, 2020, 6(1): 24. |
109 | SINGH A D, TURELL M E, TOPHAM A K. Uveal melanoma: trends in incidence, treatment, and survival[J]. Ophthalmol, 2011, 118(9): 1881-1885. |
110 | REICHSTEIN D A, BROCK A L. Radiation therapy for uveal melanoma: a review of treatment methods available in 2021[J]. Curr Opin Ophthalmol, 2021, 32(3): 183-190. |
111 | CERTO M, TSAI C H, PUCINO V, et al. Lactate modulation of immune responses in inflammatory versus tumour microenvironments[J]. Nat Rev Immunol, 2021, 21(3): 151-161. |
112 | YAO Y, XU R, SHAO W, et al. A novel nanozyme to enhance radiotherapy effects by lactic acid scavenging, ROS generation, and hypoxia mitigation[J]. Adv Sci, 2024, 11(26): e2403107. |
113 | HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmol, 2016, 123(5): 1036-1042. |
114 | YU Q, ZHOU J B. Scleral remodeling in myopia development[J]. Int J Ophthalmol, 2022, 15(3): 510-514. |
115 | RADA J A, SHELTON S, NORTON T T. The sclera and myopia[J]. Exp eye res, 2006, 82(2): 185-200. |
116 | ZHANG L, YI K, SUN Q, et al. Palladium nanocrystals regulates scleral extracellular matrix remodeling in myopic progression by modulating the hypoxia signaling pathway Nrf-2/Ho-1[J]. J Control Release, 2024, 373: 293-305. |
117 | BIZRAH M, YUSUF A, AHMAD S. An update on chemical eye burns[J]. Eye, 2019, 33(9): 1362-1377. |
118 | GU X J, LIU X, CHEN Y Y, et al. Involvement of NADPH oxidases in alkali burn-induced corneal injury[J]. Int J Mol Med, 2016, 38(1): 75-82. |
119 | TANG Y, HAN Y, ZHAO J, et al. A rational design of metal-organic framework nanozyme with high-performance copper active centers for alleviating chemical corneal burns[J]. Nanomicro Lett, 2023, 15(1): 112. |
120 | KOST O A, BEZNOS O V, DAVYDOVA N G, et al. Superoxide dismutase 1 nanozyme for treatment of eye inflammation[J]. Oxid Med Cell Longev, 2015, 2015: 5194239. |
121 | CAPRARA C, GRIMM C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease[J]. Prog Retin Eye Res, 2012, 31(1): 89-119. |
122 | MEHRZADI S, HEMATI K, REITER R J, et al. Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment[J]. Expert Opin Ther Targets, 2020, 24(4): 359-378. |
123 | GIACCO F, BROWNLEE M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058-1070. |
124 | XUE B, GE M, FAN K, et al. Mitochondria-targeted nanozymes eliminate oxidative damage in retinal neovascularization disease[J]. J Control Release, 2022, 350: 271-283. |
[1] | 张正, 汪洋, 李婷, 东为富. 聚多巴胺包覆Zn-Ti水滑石的制备、抗紫外性能及其在日化防晒中的应用[J]. 应用化学, 2024, 41(9): 1297-1306. |
[2] | 柴小静, 赵瑞瑞, 张羱, 董川, 双少敏. 金属有机框架Cu@Sc-MOF纳米酶对5΄-三磷酸腺苷的比色/荧光检测[J]. 应用化学, 2024, 41(5): 728-738. |
[3] | 徐一, 林梦瑶, 宫晓群. 多色比色法在生物传感平台的研究进展[J]. 应用化学, 2024, 41(1): 3-20. |
[4] | 卢剑天, 邹金辉, 赵博霖, 张玉微. 无机纳米酶在分析传感领域的应用研究进展[J]. 应用化学, 2024, 41(1): 60-86. |
[5] | 赵越, 孟祥芹, 阎锡蕴, 范克龙. 纳米酶:一种新型的生物安全材料[J]. 应用化学, 2021, 38(5): 524-545. |
[6] | 高明, 赵开东, 刘祥永, 金元哲. 二硫化钼纳米材料的制备及其对心肌细胞的保护作用[J]. 应用化学, 2020, 37(9): 1010-1021. |
[7] | 邱禹铭,江以航,鲁广昊. 掺杂在有机场效应晶体管中的应用进展[J]. 应用化学, 2019, 36(9): 977-995. |
[8] | 李俊容,沈爱国,胡继明. 纳米酶及其分析检测应用研究进展[J]. 应用化学, 2016, 33(11): 1245-1252. |
[9] | 孙自才, 吾满江?艾力, 徐同玉, 张亚刚. 氧气氧化油酸臭氧化物合成壬二酸的催化剂[J]. 应用化学, 2006, 23(2): 161-164. |
[10] | 肖卫东, 何培新, 何本桥. Al2O3·3H2O阻燃环氧树脂机理探讨[J]. 应用化学, 2000, 17(4): 397-400. |
[11] | 王吉祥, 刘艳滨, 王连驰, 吴越. Li/La2O3的表面活性氧及其在甲烷氧化偶联中的催化行为[J]. 应用化学, 1991, 0(3): 60-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||