应用化学 ›› 2023, Vol. 40 ›› Issue (8): 1175-1186.DOI: 10.19894/j.issn.1000-0518.230135
收稿日期:
2023-05-06
接受日期:
2023-07-06
出版日期:
2023-08-01
发布日期:
2023-08-24
通讯作者:
李家源
基金资助:
Received:
2023-05-06
Accepted:
2023-07-06
Published:
2023-08-01
Online:
2023-08-24
Contact:
Jia-Yuan LI
About author:
jiayuanli@nwpu.edu.cnSupported by:
摘要:
氢气(H2)作为一种可再生的绿色能源,在解决环境和化石能源紧缺问题受到了广泛关注。发展高效、稳定和低成本的析氢反应(Hydrogen evolution reaction, HER)电催化剂是目前氢能大规模利用面临的主要挑战之一。磷化钴(CoP)由于其类金属特性及耐酸碱腐蚀等优点,在电催化HER领域中受到广泛研究。本文以CoP与其它纳米材料形成的异质结所产生的不同效应提升HER活性为出发点,首先介绍了CoP异质结作为电催化剂用于电催化HER的优势及其所面临的挑战,其次从CoP异质结产生的不同效应在电催化HER发挥的作用等方面进行了系统的论述,最后总结和展望了CoP异质结在电催化HER方向的发展前景。
中图分类号:
王伟, 李家源. 电解水析氢反应磷化钴异质结催化剂的研究进展[J]. 应用化学, 2023, 40(8): 1175-1186.
Wei WANG, Jia-Yuan LI. Research Progress of Cobalt Phosphide Heterojunction Catalysts for Electrolytic Hydrogen Evolution Reaction[J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1175-1186.
Catalysts | Electrolyte | η10/mV | Tafel slope/(mV·dec-1) | Durability/h | Ref. |
---|---|---|---|---|---|
CoP nanosheet | 1.0 mol/L KOH | 175 | 146.69 | — | [ |
CoP | 1.0 mol/L KOH | 160 | 106 | — | [ |
CoP nanwires | 1 mol/L KOH | 137 | 76.8 | — | [ |
CoP nanoparticles | 0.5 mol/L H2SO4 | 137 | 67 | — | [ |
CoP nanorods | 1 mol/L PBS | 122.4 | 81.1 | — | [ |
CoP/CeO x | 1.0 mol/L KOH | 118 | 77.26 | 24 | [ |
Pt2Ir1/CoP | 0.5 mol/L H2SO4 | η20=7 | 25.2 | 500 | [ |
CoP/NiCoP | 1 mol/L KOH | 133 | 88 | 24 | [ |
O,Cu-CoP | 1 mol/L KOH | 72 | 57.6 | 24 | [ |
Ni2P/CoP | 0.5 mol/L H2SO4 | 105 | 64 | — | [ |
CoP@CoOOH | 1 mol/L PBS | 89.6 | 64.4 | 40 | [ |
CoP NS/CNTs | 1.0 mol/L KOH | 68 | 57 | 24 | [ |
CoP/CoO PNTs | 1.0 mol/L KOH | 61 | 78 | 10 | [ |
CoSe2/CoP | 0.5 mol/L H2SO4 | 65 | 54 | 50 | [ |
CoP/CoMoP | 1.0 mol/L KOH | 34 | 33 | 12 | [ |
NiFe-LDH@NiCoP/NF | 1 mol/L KOH | 120 | 88.2 | 100 | [ |
CoP-Co x O y /CC | 1 mol/L KOH | 43 | 64.7 | 70 | [ |
CoP-Mo2C@NC | 1 mol/L KOH | 94 | 79.7 | 15 | [ |
R-Mn-CoP | 1 mol/L KOH | 117 | 54 | — | [ |
CoP/Co-MOF | 0.5 mol/L H2SO4 | 27 | 43 | 17 | [ |
1 mol/L PBS | 49 | 63 | 17 | ||
1 mol/L KOH | 34 | 56 | 17 | ||
N-CoP/CC | 0.5 mol/L H2SO4 | 25 | 49 | 30 | [ |
1 mol/L PBS | 74 | 69 | 30 | ||
1 mol/L KOH | 39 | 58 | 30 |
表1 CoP异质结电催化剂HER性能比较
Table 1 Comparison of HER properties of CoP heterojunction electrocatalysts
Catalysts | Electrolyte | η10/mV | Tafel slope/(mV·dec-1) | Durability/h | Ref. |
---|---|---|---|---|---|
CoP nanosheet | 1.0 mol/L KOH | 175 | 146.69 | — | [ |
CoP | 1.0 mol/L KOH | 160 | 106 | — | [ |
CoP nanwires | 1 mol/L KOH | 137 | 76.8 | — | [ |
CoP nanoparticles | 0.5 mol/L H2SO4 | 137 | 67 | — | [ |
CoP nanorods | 1 mol/L PBS | 122.4 | 81.1 | — | [ |
CoP/CeO x | 1.0 mol/L KOH | 118 | 77.26 | 24 | [ |
Pt2Ir1/CoP | 0.5 mol/L H2SO4 | η20=7 | 25.2 | 500 | [ |
CoP/NiCoP | 1 mol/L KOH | 133 | 88 | 24 | [ |
O,Cu-CoP | 1 mol/L KOH | 72 | 57.6 | 24 | [ |
Ni2P/CoP | 0.5 mol/L H2SO4 | 105 | 64 | — | [ |
CoP@CoOOH | 1 mol/L PBS | 89.6 | 64.4 | 40 | [ |
CoP NS/CNTs | 1.0 mol/L KOH | 68 | 57 | 24 | [ |
CoP/CoO PNTs | 1.0 mol/L KOH | 61 | 78 | 10 | [ |
CoSe2/CoP | 0.5 mol/L H2SO4 | 65 | 54 | 50 | [ |
CoP/CoMoP | 1.0 mol/L KOH | 34 | 33 | 12 | [ |
NiFe-LDH@NiCoP/NF | 1 mol/L KOH | 120 | 88.2 | 100 | [ |
CoP-Co x O y /CC | 1 mol/L KOH | 43 | 64.7 | 70 | [ |
CoP-Mo2C@NC | 1 mol/L KOH | 94 | 79.7 | 15 | [ |
R-Mn-CoP | 1 mol/L KOH | 117 | 54 | — | [ |
CoP/Co-MOF | 0.5 mol/L H2SO4 | 27 | 43 | 17 | [ |
1 mol/L PBS | 49 | 63 | 17 | ||
1 mol/L KOH | 34 | 56 | 17 | ||
N-CoP/CC | 0.5 mol/L H2SO4 | 25 | 49 | 30 | [ |
1 mol/L PBS | 74 | 69 | 30 | ||
1 mol/L KOH | 39 | 58 | 30 |
图2 (a)不同催化剂在1.0 mol/L KOH环境中的LSV曲线; (b)电流为10 mA/cm2时,不同催化剂的过电位比较; (c)不同催化剂的Tafel斜率; (d)不同位点H2O的吸附自由能; (e)不同表面上H*的吸附能; (f) CoO、CoP和CoO/CoP异质结的态密度[34]
Fig.2 (a) HER polarization curves of different catalysts in 1.0 mol/L KOH; (b) Comparison of overpotentials at 10 mA/cm2; (c) Tafel plots of different catalysts; (d) Ealculated H2O adsorption energies on different surfaces; (e) Calculated H* adsorption energies on different surfaces; (f) DOSs on CoO, CoP and CoO/CoP heterostructures[34]
图3 (a)不同催化剂在1.0 mol/L KOH环境中的LSV曲线; (b)不同催化剂的Tafel斜率; (c) CoP/CeO x -20∶1的计时电流曲线; (d)经过HER过程CoP/CeO x -20∶1的SEM图像; (e) HER后CoP/CeO x -20∶?1的HAADF-STEM图像; (f)接触前后CeO x 和CoP的能量图和CoP/CeO x p-n异质结HER催化原理图; (g) CoP (211)和CoP (211)/CeO2(111)异质结的Co3d轨道部分态密度,d-带中心的位置由垂直虚线标记[7]
Fig.3 (a) HER polarization curves of CoP/CeO x -10∶?1, CoP/CeO x -20∶?1, CoP/CeO x -30∶?1, CoP, and CeO x in 1 mol/L KOH; (b) Tafel plots of CoP/CeO x -10∶?1, CoP/CeO x -20∶?1, CoP/CeO x -30∶?1, CoP, and CeO x in 1 mol/L KOH; (c) Chronoamperometry curve of CoP/CeO x -20∶?1; (d) SEM image of CoP/CeO x -20∶?1 after HER; (e) HAADF-STEM image of CoP/CeO x -20∶?1 after HER; (f) Energy diagrams of CeO x and CoP before and after contact and schematic diagram of the proposed mechanism for catalyzing HER in the CoP/CeO x p-n heterojunction; (g) Partial density of states (PDOS) of the Co3d band of CoP (211) (top panel) and CoP(211)/CeO2(111) heterojunction (bottom panel). The positions of d-band centers are marked by vertical dashed lines[7]
图4 (a)由CoCH进行拓扑转换制备CoP/CoMoP的原理图; (b) CoP/CoMoP的高分辨率TEM; (c) CoP/CoMoP、pure-CoP、pure-CoMoP、Pt/C和纯Ni泡沫在1.0 mol/L KOH中的极化曲线,扫描速率为2 mV/s; (d)相应的Tafel斜率; (e)在碱性电解质中CoP/CoMoP界面对HER的活性贡献[36]
Fig.4 (a) The schematic diagram to illustrate the fabrication process of CoP/CoMoP via topotactic conversion from CoCH; (b) High-resolution TEM of CoP/CoMoP; (c) The HER iR-corrected polarization curves of CoP/CoMoP, pure-CoP, pure-CoMoP, Pt/C and bare Ni foam with a scan rate of 2 mV/s in 1 mol/L KOH; (d) The corresponding Tafel plots; (e) The mechanisms of the cooperative CoP/CoMoP interfaces acting on HER in alkaline electrolyte[36]
图5 (a)各种Pt2M1/CoP和Pt/CoP催化剂(质量分数1.0%)和Pt/C (质量分数20%)的LSV曲线; (b)各种催化剂的Tafel图; (c) Pt2Ir1/CoP(质量分数1.0%)对HER的贵金属利用活性与其他已知的贵金属基催化剂,特别是单原子Pt催化剂的比较; (d) Pt2Ir1/CoP在40 mA/cm2下的催化耐久性(质量分数1.0%)。插图是LSV曲线的循环性能和Faradic效率; (e)在Pt2Ir1/CoP和Pt/CoP的HER的自由能图; (f)各位点优化过后的H*吸附结构; (g)界面电子密度差图,其中电子损失用蓝色表示,电子富集用红色表示[10]
Fig.5 (a) LSV curves of various Pt2M1/CoP and Pt/CoP catalysts (mass percent 1.0%) and Pt/C (mass percent 20%) benchmarks; (b) LSV-derived Tafel plots for various catalysts; (c) Comparisons of the noble-metal utilization activity of Pt2Ir1/CoP (mass percent 1.0%) for HER with those of other well-known noble-metal based catalysts, especially the single-atom Pt catalysts; (d) Catalytic durability of Pt2Ir1/CoP (mass percent 1.0%) through a time-overpotential profile at 40 mA/cm2. Insets are cycle performance of LSV curves and Faradic efficiency; (e) Calculated free energy diagram for HER on Pt2Ir1/CoP paradigm and Pt/CoP benchmark; (f) The optimized H* adsorption structures at various sites; (g) Electron density difference map of interfaces, where a loss of electrons is indicated in blue and electron enrichment is indicated in red[10]
图6 (a) 1 mol/L KOH环境下各种催化剂的LSV曲线; (b) 1 mol/L KOH环境下各种催化剂的Tafel图; (c) 0.5 mol/L H2SO4环境下各种催化剂的LSV曲线; (d)0.5 mol/L H2SO4环境下各种催化剂的Tafel图; (e) 1 mol/L KOH和0.5 mol/L H2SO4环境下催化剂的LSV曲线循环性能; (f) 1 mol/L KOH和0.5 mol/L H2SO4环境下长时间的计时电流曲线; (g)优化后的氢原子吸附结构; (h)优化后的H2O吸附结构[13]
Fig.6 (a) Polarization curves in 1 mol/L KOH; (b) Tafel plots in 1 mol/L KOH; (c) Polarization curves in 0.5 mol/L H2SO4; (d) Tafel plots in 0.5 mol/L H2SO4; (e) Cycle performance of LSV curves of the samples in 1 mol/L KOH and 0.5 mol/L H2SO4; (f) Long-time chronoamperometry tests in 1 mol/L KOH and 0.5 mol/L H2SO4; (g) The optimized hydrogen atom adsorption structure; (h) The optimized hydrogen H2O adsorption structure[13]
1 | LUO Y T, ZHANG Z Y, CHHOWALLA M, et al. Recent advances in design of electrocatalysts for high-current-density water splitting[J]. Adv Mater, 2022, 34(16): 2108133. |
2 | FU H Q, ZHOU M, LIU P F, et al. Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential[J]. J Am Chem Soc, 2022, 144(13): 6028-6039. |
3 | ZHANG W, HAN N, LUO J S, et al. Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting[J]. Small, 2022, 18(4): 2103561. |
4 | BODHANKAR P M, SARAWADE P B, KUMAR P, et al. Nanostructured metal phosphide based catalysts for electrochemical water splitting: a review[J]. Small, 2022, 18(21): 2107572. |
5 | KUANG P Y, SAYED M, FAN J J, et al. 3D graphene-based H2-production photocatalyst and electrocatalyst[J]. Adv Energy Mater, 2020, 10(14): 1903802. |
6 | ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem Soc Rev, 2015, 44(15): 5148-5180. |
7 | SONG X Z, ZHU W Y, NI J C, et al. Boosting hydrogen evolution electrocatalysis via regulating the electronic structure in a crystalline-amorphous CoP/CeOx p-n heterojunction[J]. ACS Appl Mater Interfaces, 2022, 14(29): 33151-33160. |
8 | HE J S, LIU P Y, RAN R, et al. Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies[J]. J Mater Chem A, 2022, 10(13): 6835-6871. |
9 | XIE X Q, LIU J, GU C, et al. Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting[J]. J Energy Chem, 2022, 64: 503-510. |
10 | LI J Y, HU J, ZHANG M K, et al. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution[J]. Nat Commun, 2021, 12(1): 3502. |
11 | CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488: 294-303. |
12 | DAI J, ZHU Y L, CHEN Y, et al. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis[J]. Nat Commun, 2022, 13(1): 1189. |
13 | LIN Y, SUN K A, LIU S J, et al. Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor[J]. Adv Energy Mater, 2019, 9(36): 1901213. |
14 | SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): eaad4998. |
15 | GREELEY J, JARAMILLO T F, BONDE J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nat Mater, 2006, 5(11): 909-913. |
16 | BHANJA P, MOHANTY B, CHONGDAR S, et al. Novel microporous iron-embedded cobalt phosphonates feasible for electrochemical overall water splitting[J]. ACS Appl Energy Mater, 2022, 5(3): 3558-3567. |
17 | ARUNKUMAR P, GAYATHRI S, HAN J H. Impact of an incompatible atomic nickel-incorporated metal-organic framework on phase evolution and electrocatalytic activity of Ni-doped cobalt phosphide for the hydrogen evolution reaction[J]. ACS Appl Energy Mater, 2022, 5(3): 2975-2992. |
18 | LI Y, DONG Z H, JIAO L F. Multifunctional transition metal-based phosphides in energy-related electrocatalysis[J]. Adv Energy Mater, 2019, 10(11): 1902104. |
19 | ZHANG C, HUANG Y, YU Y F, et al. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive 200 facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction[J]. Chem Sci, 2017, 8(4): 2769-2775. |
20 | HUANG C Q, HUANG Y, LIU C B, et al. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode[J]. Angew Chem Int Ed Engl, 2019, 58(35): 12014-12017. |
21 | WEI J M, ZHOU M, LONG A C, et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions[J]. Nanomicro Lett, 2018, 10(4): 75. |
22 | JIAN K L, MA W S, LV Z P, et al. Tuning the electronic structure of the CoP/Ni2P nanostructure by nitrogen doping for an efficient hydrogen evolution reaction in alkaline media[J]. Inorg Chem, 2021, 60(23): 18544-18552. |
23 | LI X T, LIU Y Z, SUN Q D, et al. Surface engineered CoP/Co3O4 heterojunction for high-performance bi-functional water splitting electro-catalysis[J]. Nanoscale, 2021, 13(47): 20281-20288. |
24 | LU Z J, CAO Y L, XIE J, et al. Construction of Co2P/CoP@Co@NCNT rich-interface to synergistically promote overall water splitting[J]. Chem Eng J, 2022, 430: 132877. |
25 | XU W, WANG B B, NI X M, et al. Heterogeneous synergetic effect of metal-oxide interfaces for efficient hydrogen evolution in alkaline solutions[J]. ACS Appl Mater Interfaces, 2021, 13(11): 13838-13847. |
26 | ZHENG D, YU L H, LIU W X, et al. Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts[J]. Cell Rep Phys Sci, 2021, 2(6): 100443. |
27 | MUTHUKUMAR P, MOON D, ANTHONY S P. Copper coordination polymer electrocatalyst for strong hydrogen evolution reaction activity in neutral medium: influence of coordination environment and network structure[J]. Catal Sci Technol, 2019, 9(16): 4347-4354. |
28 | LU Y, CHENG X, TIAN G, et al. Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability[J]. Nano Energy, 2018, 47: 8-17. |
29 | GUO Y, TANG J, HENZIE J, et al. Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting[J]. ACS Nano, 2020, 14(4): 4141-4152. |
30 | XU K, SUN Y Q, SUN Y M, et al. Yin-yang harmony: metal and nonmetal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution[J]. ACS Energy Lett, 2018, 3(11): 2750-2756. |
31 | LIANG X, ZHENG B X, CHEN L G, et al. MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting[J]. ACS Appl Mater Interfaces, 2017, 9(27): 23222-23229. |
32 | ZHANG B, SHAN J W, WANG W L, et al. Oxygen vacancy and core-shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting[J]. Small, 2022, 18(12): 2106012. |
33 | ZHANG Y, WANG Y, WANG T T, et al. Heterostructure of 2D CoP nanosheets/1D carbon nanotubes to significantly boost the alkaline hydrogen evolution[J]. Adv Mater Interfaces, 2019, 7(2): 1901302. |
34 | ZHOU Q X, SUN R X, REN Y P, et al. Reactive template-derived interfacial engineering of CoP/CoO heterostructured porous nanotubes towards superior electrocatalytic hydrogen evolution[J]. Carbon Energy, 2022, 5(1): 273. |
35 | SHEN S J, WANG Z P, LIN Z P, et al. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution[J]. Adv Mater, 2022, 34(13): 2110631. |
36 | HUANG X K, XU X P, LUAN X X, et al. Cop nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction[J]. Nano Energy, 2020, 68: 104332. |
37 | ZHANG H J, LI X P, HäHNEL A, et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting[J]. Adv Funct Mater, 2018, 28(14): 1706847. |
38 | ALSABBAN M M, ESWARAN M K, PERAMAIAH K, et al. Unusual activity of rationally designed cobalt phosphide/oxide heterostructure composite for hydrogen production in alkaline medium[J]. ACS Nano, 2022, 16(3): 3906-3916. |
39 | DUTTA S, INDRA A, HAN H, et al. An intriguing pea-like nanostructure of cobalt phosphide on molybdenum carbide incorporated nitrogen-doped carbon nanosheets for efficient electrochemical water splitting[J]. ChemSusChem, 2018, 11(22): 3956-3964. |
40 | LI X M, HU Q Y, WANG H Y, et al. Charge induced crystal distortion and morphology remodeling: formation of Mn-CoP nanowire@Mn-CoOOH nanosheet electrocatalyst with rich edge dislocation defects[J]. Appl Catal B: Environ, 2021, 292: 120172. |
41 | LIU T, LI P, YAO N, et al. Cop-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction[J]. Angew Chem Int Ed Engl, 2019, 58(14): 4679-4684. |
42 | MEN Y N, LI P, YANG F L, et al. Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction[J]. Appl Catal B: Environ, 2019, 253: 21-27. |
43 | EL-REFAEI S M, RUSSO P A, PINNA N. Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values[J]. ACS Appl Mater Interfaces, 2021, 13(19): 22077-22097. |
44 | HE K, TSEGA T T, LIU X, et al. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis[J]. Angew Chem Int Ed Engl, 2019, 58(34): 11903-11909. |
45 | ZHUANG Z C, LI Y, LI Z L, et al. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution[J]. Angew Chem Int Ed Engl, 2018, 57(2): 496-500. |
46 | LONG B, YANG H, LI M Y, et al. Interface charges redistribution enhanced monolithic etched copper foam-based Cu2O layer/TiO2 nanodots heterojunction with high hydrogen evolution electrocatalytic activity[J]. Appl Catal B: Environ, 2019, 243: 365-372. |
47 | ZHANG H J, MAIJENBURG A W, LI X P, et al. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting[J]. Adv Funct Mater, 2020, 30(34): 2003261. |
48 | YANG F L, CHEN Y T, CHENG G Z, et al. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution[J]. ACS Catal, 2017, 7(6): 3824-3831. |
49 | LI Y, LI F M, ZHAO Y, et al. Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting[J]. J Mater Chem A, 2019, 7(36): 20658-20666. |
50 | CALLEJAS J F, READ C G, POPCZUN E J, et al. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP[J]. Chem Mater, 2015, 27(10): 3769-3774. |
51 | PAN Y, LIN Y, CHEN Y J, et al. Cobalt phosphide-based electrocatalysts: synthesis and phase catalytic activity comparison for hydrogen evolution[J]. J Mater Chem A, 2016, 4(13): 4745-4754. |
[1] | 梁锦辉, 梁乐程, 崔志明. 金属间化合物电催化剂在氢电转换器件应用中的研究进展[J]. 应用化学, 2023, 40(8): 1140-1157. |
[2] | 刘嘉欣, 范家禾, 李曙辉, 马亮. Rh@Pt内凹立方体核壳催化剂的制备及其乙醇电氧化性能[J]. 应用化学, 2023, 40(8): 1195-1204. |
[3] | 惠连成, 庄鉴行, 肖顺, 李美平, 靳梦圆, 吕青. 镍氮掺杂石墨炔用作高效氧还原电催化剂[J]. 应用化学, 2023, 40(8): 1205-1213. |
[4] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[5] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[6] | 杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261. |
[7] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[8] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[9] | 曹维锦, 白璐, 武兰兰, 李敬德, 宋术岩. 多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧[J]. 应用化学, 2022, 39(4): 666-672. |
[10] | 商林杰, 刘江, 兰亚乾. 共价有机框架材料用于光/电催化CO2还原的研究进展[J]. 应用化学, 2022, 39(4): 559-584. |
[11] | 张艺潆, 李翠艳, 赵杰, 余笑明, 方千荣. 卟啉-硫醚基共价有机框架材料用于氧还原反应电催化剂[J]. 应用化学, 2022, 39(4): 647-656. |
[12] | 孙立智, 吕浩, 闵晓文, 刘犇. 介孔钯-硼合金纳米颗粒的制备和甲醇氧化电催化性能[J]. 应用化学, 2022, 39(4): 673-684. |
[13] | 吴小峰, 陈德顺, 马伟, 黄科科. 电喷雾沉积WO3/Fe2TiO5复合光阳极及其光电催化水裂解性能[J]. 应用化学, 2022, 39(4): 694-696. |
[14] | 隋丽丽, 黄微微, 王平, 徐英明, 程晓丽, 霍丽华, 姜惠烨, 赵冰, 张文治, 王政军, 刘亚红. 原位生长的α-Fe2O3/ZnO异质纳米棒阵列对乙醇气体的高选择性检测[J]. 应用化学, 2021, 38(7): 857-865. |
[15] | 隋丽丽, 黄微微, 王平, 徐英明, 程晓丽, 霍丽华, 姜惠烨, 赵冰, 张文治, 王政军, 刘亚红. 原位生长的α-Fe2O3/ZnO异质纳米棒阵列对乙醇气体的高选择性检测[J]. 应用化学, 2021, 38(7): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||