1 |
SHAN J Q, YE C, CHEN S M, et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. J Am Chem Soc, 2021, 143(13): 5201-5211.
|
2 |
SHINDE S S, JUNG J Y, WAGH N K, et al. Ampere-hour-scale zinc-air pouch cells[J]. Nat Energy, 2021, 6(6): 592-604.
|
3 |
WANG Z Y, PARRONDO J, HE C, et al. Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells[J]. Nat Energy, 2019, 4(4): 281-289.
|
4 |
BAO H H, QIU Y, PENG X Y, et al. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products[J]. Nat Commun, 2021, 12(1): 238.
|
5 |
XIAO M L, ZHANG H, CHEN Y T, et al. Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site[J]. Nano Energy, 2018, 46: 396-403.
|
6 |
XIAO M L, ZHU J B, LI G R, et al. A Single-atom iridium heterogeneous catalyst in oxygen reduction reaction[J]. Angew Chem Int Ed, 2019, 58(28): 9640-9645.
|
7 |
CHEN K J, LIU K, AN P D, et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction[J]. Nat Commun, 2020, 11(1): 4173.
|
8 |
XIAO M L, ZHU J B, LI S, et al. 3D-orbital occupancy regulated Ir-Co atomic pair toward superior bifunctional oxygen electrocatalysis[J]. ACS Catal, 2021, 11(14): 8837-8846.
|
9 |
JIAO L, LI J K, RICHARD L L, et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites[J]. Nat Mater, 2021, 20(10): 1385-1391.
|
10 |
HA Y, FEI B, YAN X X, et al. Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction[J]. Adv Energy Mater, 2020, 10(46):.
|
11 |
HAN A, WANG X J, TANG K, et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance[J]. Angew Chem Int Ed, 2021, 60(35): 19262-19271.
|
12 |
TONG M M, SUN F F, XIE Y, et al. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction[J]. Angew Chem Int Ed, 2021, 60(25): 14005-14012.
|
13 |
XIAO M M, GAO L Q, WANG Y, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. J Am Chem Soc, 2019, 141(50): 19800-19806.
|
14 |
THOMPSON S T, PAPAGEORGOPOULOS D. Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles[J]. Nat Catal, 2019, 2(7): 558-561.
|
15 |
ZHOU Y Z, CHEN G B, WANG Q, et al. Fe-N-C electrocatalysts with densely accessible Fe-N4 sites for efficient oxygen reduction reaction[J]. Adv Funct Mater, 2021, 31(34):2102420.
|
16 |
WANG X X, SWIHART M T, WU G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nat Catal, 2019, 2(7): 578-589.
|
17 |
SAHRAIE N R, KRAMM U I, STEINBERG J, et al. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts[J]. Nat Commun, 2015, 6: 8618.
|
18 |
STRICKLAND K, MINER E, JIA Q Y, et al. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination[J]. Nat Commun, 2015, 6: 7343.
|
19 |
MUN Y, LEE S, KIM K, et al. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-with drawing/donating properties of a carbon plane[J]. J Am Chem Soc, 2019, 141(15): 6254-6262.
|
20 |
ZITOLO A, GOELLNER V, ARMEL V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nat Mater, 2015, 14 (9): 937-942.
|
21 |
WAGNER S, AUERBACH H, TAIT C E, et al. Elucidating the structural composition of an Fe-N-C catalyst by nuclear- and electron-resonance techniques[J]. Angew Chem Int Ed, 2019, 58(31): 10486-10492.
|
22 |
XIAO M M, XING Z H, JIN Z, et al. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Adv Mater, 2020, 32(49): e2004900.
|
23 |
LI Z J, JI S Q, XU C, et al. Engineering the electronic structure of single-atom iron sites with boosted oxygen bifunctional activity for zinc-air batteries[J]. Adv Mater, 2023, 35(9): e2209644.
|
24 |
XIE X Y, PENG L S, YANG H Z, et al. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts[J]. Adv Mater, 2021, 33(23): e2101038.
|
25 |
YANG J L, JU Z C, JIANG Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Adv Mater, 2018, 30(4): 1700104.
|
26 |
王显, 杨小龙, 马荣鹏, 等. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208.
|
|
WANG X, YANG X L, MA R P, et al. Atomic dispersion Ir-N-C catalysts for anode anti-poisoning electrolysis in fuel cell[J]. Chin J Appl Chem, 2022, 39(8): 1202-1208.
|
27 |
WANG X, ZHANG L, XIAO M M, et al. Polymer-chelation approach to high-performance Fe-Nx-C catalyst towards oxygen reduction reaction[J]. Chin Chem Lett, 2023, 34(4):107455.
|
28 |
LIU Y Y, TU F D, ZHANG Z Y, et al. Molecular scissor tailoring hierarchical architecture of ZIF-derived Fe/N/C catalysts for acidic oxygen reduction reaction[J]. Appl Catal B: Environ, 2023, 324:122209.
|
29 |
PENG L S, YANG J, YANG Y Q, et al. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media[J]. Adv Mater, 2022, 34(29): e2202544.
|
30 |
ZAHNG M T, LI H, CHEN J X, et al. High-loading Co single atoms and clusters active sites toward enhanced electrocatalysis of oxygen reduction reaction for high-performance Zn-air battery[J]. Adv Funct Mater, 2022, 33(4): 202209726.
|