应用化学 ›› 2023, Vol. 40 ›› Issue (6): 879-887.DOI: 10.19894/j.issn.1000-0518.220396

• 研究论文 • 上一篇    下一篇

磁性NiFe2O4负载Ru催化5-羟甲基糠醛选择性氧化合成2,5-呋喃二甲酸

杨玉雯1, 齐婧瑶2, 李林3, 楚国宁1, 王赛1, 张钰1, 张爽1()   

  1. 1.吉林化工学院石油化工学院,吉林 132022
    2.吉林石化公司有机合成厂,吉林 132021 )
    3.巴斯夫吉化新戊二醇有限公司,吉林 132021
  • 收稿日期:2022-12-09 接受日期:2023-03-27 出版日期:2023-06-01 发布日期:2023-06-27
  • 通讯作者: 张爽
  • 基金资助:
    吉林省科技厅自然科学基金(YDZJ202101ZYTS163);吉林化工学院博士启动基金(2020006);吉林化工学院科学技术研究项目(202020)

Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ru Supported on Magnetic NiFe2O4

Yu-Wen YANG1, Jing-Yao QI2, Lin LI3, Guo-Ning CHU1, Sai WANG1, Yu ZHANG1, Shuang ZHANG1()   

  1. 1.Institute of Petrochemical Technology,Jilin Institute of Chemical Technology,Jilin 132022,China
    1.Jilin Petrochemical Company Organic Synthesis Plant,Jilin 132021,China
    3.BASF PJPC Neopentylglycol Company Limited,Jilin 132021,China
  • Received:2022-12-09 Accepted:2023-03-27 Published:2023-06-01 Online:2023-06-27
  • Contact: Shuang ZHANG
  • About author:zs3062332@126.com
  • Supported by:
    the Natural Science Foundation of Jilin Provincial Science and Technology Department(YDZJ202101ZYTS163);Jilin Institute of Chemical Technology Doctoral Launch Fund(2020006);the Science and Technology Research Project of Jilin University of Chemical Technology(202020)

摘要:

采用水热-煅烧法制备了磁性镍铁尖晶石载体NiFe2O4,再采用浸渍-还原法在载体上负载Ru纳米粒子制备Ru/NiFe2O4催化剂。采用X射线衍射(XRD)、N2吸附-脱附(BET)、NH3程序升温脱附(NH3-TPD)、H2程序升温还原(H2-TPR)、X射线光电子能谱(XPS)和电感耦合等离子体发射光谱(ICP-OES)测试对催化剂进行表征分析。结果表明,Ru/NiFe2O4催化剂表面氧物种丰富,相较于载体,负载Ru后催化剂比表面积和表面酸量增加,Ru与载体存在相互作用,这可能是催化剂高活性和高稳定性的关键。将催化剂用于5-羟甲基糠醛(HMF)的选择性氧化,负载Ru后,催化剂催化活性显著提升。对反应条件进行优化,在添加0.08 g KHCO3,氧化剂O2压力为1MPa,反应温度为80 ℃,使用0.1 g Ru/NiFe2O4催化剂,在水溶液中反应12 h HMF能完全转化,2,5-呋喃二甲酸(FDCA)产率为98.1%。Ru/NiFe2O4循环使用5次后仍能保持较高的活性,催化剂上活性组分Ru不易浸出,并且催化剂具有磁性能便于与反应溶液分离。为今后工业化催化HMF高效选择性氧化合成FDCA提供参考。

关键词: Ru纳米粒子, NiFe2O4, 催化氧化, 5-羟甲基糠醛, 2, 5-呋喃二甲酸

Abstract:

The magnetic nickel-iron spinel carrier NiFe2O4 is prepared by hydrothermal calcination, and then Ru/NiFe2O4 is prepared by impregnation reduction method by loading Ru nanoparticles on the carriers. The catalyst is characterized by X-ray diffraction (XRD),N2 adsorption-desorption (BET), NH3 programmed temperature desorption (NH3-TPD),H2 programmed temperature reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical-emission spectrometry (ICP-OES). The results show that the surface oxygen species of Ru/NiFe2O4 catalyst are abundant,and compared with the carriers, the specific surface area and acid amount of the catalyst increases after loading Ru, and Ru interacts with the support, which may be the key to the high activity and stability of the catalyst. The catalyst is used for the selective oxidation of 5-hydroxymethylfurfural (HMF), and the experimental results show that the catalytic activity of the catalyst is significantly increased after loading Ru. The reaction conditions are optimized, when 0.08 g of KHCO3 is added, the oxidant O2 pressure is 1 MPa, the reaction temperature is 80 ℃,and 0.1 g of Ru/NiFe2O4 catalyst is used,HMF could be completely converted in water solution for 12 h,and the yield of 2,5-furandicarboxylic acid (FDCA) is 98.1%. Ru/NiFe2O4 can still maintain high activity after 5 cycles,and the active component Ru on the catalyst is not easy to leach. The catalyst has magnetic performance, which is convenient for separation from the reaction solution. The research provides valuable reference for the future industrialization of the highly efficient selective oxidation of HMF to synthesize FDCA.

Key words: Ru nanoparticles, NiFe2O4, Catalytic oxidation, 5-Hydroxymethylfurfural, 2, 5-Furandicarboxylic acid

中图分类号: