Please wait a minute...
应用化学
今天是
应用化学  2016, Vol. 33 Issue (4): 367-378    DOI: 10.11944/j.issn.1000-0518.2016.04.150439
  综合评述 本期目录 | 过刊浏览 | 高级检索 |
高稳定性金属有机骨架UiO-66的合成与应用
韩易潼a,刘民a,李克艳a,左轶a,张国亮b,张宗超c,郭新闻a*()
a大连理工大学化工学院,宾州-大连联合能源研究中心,精细化工重点实验室 辽宁 大连 116024
b浙江工业大学生物与环境工程学院 杭州 310014
c中国科学院大连化学物理研究所,洁净能源国家实验室 辽宁 大连 116023
Preparation and Application of High Stability Metal-Organic Framework UiO-66
HAN Yitonga,LIU Mina,LI Keyana,ZUO Yia,ZHANG Guoliangb,ZHANG Zongchaoc,GUO Xinwena*()
aState Key Laboratory of Fine Chemicals,PSU-DUT Joint Center for Energy Research,School of Chemical Engineering,Dalian University of Technology,Dalian,Liaoning 116024,China
bCollege of Biological and Environmental Engineering,Zhejiang University of Technology,Hangzhou 310014,China
cDalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian,Liaoning 116023,China
全文: PDF(943 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

金属有机骨架(metal-organic frameworks,MOFs)是一种由金属中心与有机配体自组装而成的、具有三维网状有序孔结构的新型多孔晶体材料,其具有超高的比表面积、种类和结构多样性、可化学功能化等特点,在多个研究领域显示出了潜在的应用前景,已成为当前化学、材料学科的研究热点之一。 然而大多数MOFs材料的稳定性较差,极大地束缚了MOFs材料的发展。 以Zr为金属中心,对苯二甲酸为有机配体的UiO-66具有较好的热稳定性,结构可在500 ℃保持稳定,并且其还具有很高的耐酸性和一定的耐碱性,引起了人们的关注。 本文主要综述了UiO-66在合成调控、功能化合成和后改性方面的研究现状,以及其在吸附和催化等领域的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩易潼
刘民
李克艳
左轶
张国亮
张宗超
郭新闻
关键词 金属有机骨架UiO-66合成吸附催化综述    
Abstract

Metal-organic frameworks(MOFs) are a new class of hybrid porous crystalline materials constructed from metal-oxygen clusters with organic linkers, creating three dimensional ordered frameworks. As porous materials, MOFs usually possess very high surface area. The framework topologies and pore size of MOFs can be designed via choosing various metal centers and organic linkers, their chemical properties can be modified by chemical functionalization of linkers and post modification. These unique characteristics make MOFs one of the research hot spots in the fields of chemistry and materials, and they have shown potential applications in various research areas. But there is a crucial weakness which hinders the development of MOFs, namely, the low stability. However, zirconium-terephthalate-based MOF UiO-66 has remarkable hydrothermal stability, the framework is claimed to be stable up to 500 ℃, and it is also highly resistant to many solvents. UiO-66 has gained great attention since the outstanding qualities. In this review, details of the synthesis modulation and functionalization of UiO-66 are presented. In addition, the research actuality and prospective of UiO-66 in the fields of adsorption, catalysis, etc. are also discussed.

Key wordsmetal-organic frameworks    UiO-66    synthesis    adsorption    catalysis    review
收稿日期: 2015-12-09           接受日期: 2016-02-04
基金资助:国家自然科学基金重点项目(21236008)、中央高校基本科研业务费(2342013DUT13RC(3)704)以及中国博士后科学基金(2014M551094)资助
通讯作者: 郭新闻     E-mail: guoxw@dlut.edu.cn
引用本文:   
韩易潼,刘民,李克艳,左轶,张国亮,张宗超,郭新闻. 高稳定性金属有机骨架UiO-66的合成与应用[J]. 应用化学, 2016, 33(4): 367-378.
HAN Yitong,LIU Min,LI Keyan,ZUO Yi,ZHANG Guoliang,ZHANG Zongchao,GUO Xinwen. Preparation and Application of High Stability Metal-Organic Framework UiO-66. Chinese Journal of Applied Chemistry, 2016, 33(4): 367-378.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2016.04.150439      或      http://yyhx.ciac.jl.cn/CN/Y2016/V33/I4/367
图1UiO-66的结构示意图。 较大和较小的两种球形分别代表正八面体笼与正四面体笼中的孔道[23]
Fig.1Illustration of the UiO-66 structure. The big sphere and small sphere represent the void regions inside the octahedral and the tetrahedral cages, respectively. Hydrogen atoms on the organic linkers were omitted for clarity[23]
图2UiO-66的SEM照片(未发表数据)
Fig.2The SEM image of UiO-66(unpublished data)
图3不同苯甲酸加入量下得到的UiO-66的SEM照片[25]
Fig.3The SEM images of UiO-66 obtained with varied additive amounts of benzoicacid[25]
图4不同氢氟酸添加量和原料反应浓度下晶化得到的UiO-66晶体的SEM照片[30]
Fig.4The SEM images of UiO-66 obtained with varied additive amounts of hydrofluoric acid and concentrations of reactants[30]
图5UiO-66-CAT的合成示意图[44]
Fig.5The synthesis scheme of the UiO-66-CAT[44]
图620 ℃(A)和0 ℃(B)UiO-66-X的CO2吸附等温线及UiO-66-X上吸附CO2的等量吸附热曲线(C)[41]
Fig.6CO2 isotherms at 20 ℃(A) and 0 ℃(B), and calculated isosteric heat of adsorption as a function of CO2 uptake(C) for UiO-66 MOFs. UiO-66-(CH3)2, pink(■); UiO-66-NH2, blue(▲); UiO-66-NO2, red(●);UiO-66, green(◆); UiO-66-Br, black(◆)[41]
Entry Catalyst Benzoyl chloride conversion/%
1 Blank -
2 H2SO4a 68.5
3 HBEA(Si/Al=12.5) 46.0
4 Cu-BTC 36.4
5 MIL-101(Cr) 21.4
6 UiO-66 17.2
7 UiO-66-SO3H (grafting) 40.8
8 UiO-66-SO3H (solvothermal) 55.7
表1不同酸催化剂上二甲苯与苯甲酰氯反应结果[53]
Table 1p-Xylene acylation with benzoyl chloride using various acid catalyst[53]
图7UiO-66与UiO-66-NH2的紫外可见光谱[54]
Fig.7UV/Vis spectra of UiO-66 and UiO-66-NH2MOFs[54]
图8UiO-66(a)、Pt/UiO-66(b)、UiO-66-NH2(c)及Pt/UiO-66-NH2(d)催化剂上生成的氢气量[54]
Fig.8Volume of hydrogen evolved(VH2) during the photocatalytic reactions using UiO-66(a), Pt/UiO-66(b), UiO-66-NH2(c) and Pt/UiO-66-NH2(d)[54]
图9UiO-66(Zr)(a)、Pt@UiO-66(Zr)(b)、RhB-sensitized Pt@UiO-66(Zr)(c)及5×10-6RhB水溶液(d)的UV-Vis光谱[55]
Fig.9UV-Vis diffraction spectra of UiO-66(Zr)(a), Pt@UiO-66(Zr)(b), RhB-sensitized Pt@UiO-66(Zr)(c) and 5×10-6RhB(d)[55]
Entry Catalyst Cr/%(molar fraction) MOF/%(molar fraction) Solvent Time/h Yield/%b
1 Blank 0 0 C6H5Cl 24 8
2 UiO-66 0 2 C6H5Cl 24 8
3 UiO-66-CAT 0 2 C6H5Cl 24 12
4 UiO-66, K2CrO4c 0.08 2 C6H5Cl 24 12
5 K2CrO4 1.5 N/A C6H5Cl 24 35
6 Cr(acac)3 1.5 N/A C6H5Cl 24 28
7 K2CrO4/catbdc 1.5 N/A C6H5Cl 24 35
8 UiO-66-CrCAT 1 2 C6H5Cl 24 99
9 UiO-66-CrCAT 0.5 1 neat 8 99
表2Cr基催化剂上2-庚醇催化氧化制2-庚酮反应结果[44]
Table 2Oxidation of 2-heptanol on Cr-based catalysts[44]
图10nUiO-66(A)、Pt?nUiO-66(B)及Pt-on-nUiO-66(C)的SEM照片[59]
Fig.10The SEM images of nUiO-66(A), Pt?nUiO-66(B) and Pt-on-nUiO-66(C)[59]
图11MCP氢解反应路径示意图(A)及3个催化剂150 ℃反应下不同反应路径的产物选择性(B)[59]
Fig.11Schematic reaction diagram of hydrogenative conversion of MCP(A) and products selectivity obtained at 150 ℃ over three catalysts(B)[59]
[1] Rowsell J L C,YaghiO M. Metal-Organic Frameworks:A New Class of Porous Materials[J]. Micropor Mesopor Mater,2004,73(1/2):3-14.
[2] OckwigN W,O'Keeffe M,YaghiO M,et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res,2005,38(3):176-182.
[3] Furukawa H,Cordova K E,O'Keeffe M, et al. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science,2013,341(1230444):974-986.
[4] Eddaoudi M,Kim J,Rosi N,et al.Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295(5554):469-472.
[5] Rowsel J L C,Yaghi O M. Strategies for Hydrogen Store in Metal-Organic Frame Works[J]. Angew Chem Int Ed,2005,44(30):4670-4679.
[6] Jia J H,Lin X,Wilson C,et al.Twelve-connected Porous Metal-Organic Frameworks with High H2 Adsorption[J]. Chem Commun,2007,(8):840-842.
[7] Barin G,Krungleviciute V,Gutov O,et al.Defect Creation by Linker Fragmentation in Metal-Organic Frameworks and Its Effects on Gas Uptake Properties[J]. Inorg Chem,2014,53(13):6914-6919.
[8] López-Maya E,Montoro C,Colombo V,et al.Improved CO2 Capture from Flue Gas by Basic Sites, Charge Gradients, and Missing Linker Defects on Nickel Face Cubic Centered MOFs[J]. Adv Funct Mater,2014,24(39):6130-6135.
[9] Trens P,Belarbi H,Shepherd C,et al.Adsorption and Separation of Xylene Isomers Vapors onto the Chromium Terephthalate-based Porous Material MIL-101(Cr):An Experimental and Computational Study[J]. Micropor Mesopor Mater,2014,183(1):17-22.
[10] Cirujano F G,Llabr si Xamena F X,Corma A. MOFs as Multifunctional Catalysts:One-pot Synthesis of Menthol From Citronellal over a Bifunctional MIL-101 Catalyst[J]. Dalton Trans,2012,41(14):4249-4254.
[11] Opelt S,Turk S,Dietzsch E,et al.Preparation of Palladium Supported on MOF-5 and Its Use as Hydrogenation Catalyst[J]. Catal Commun,2008,9(6):1286-1290.
[12] Ramos-Fernandez E V,Pieters C,Linden B,et al. Highly Dispersed Platinum in Metal Organic Framework NH2-MIL-101(Al) Containing Phosphotungstic Acid-Characterization and Catalytic Performance[J]. J Catal,2012,289:42-52.
[13] Fazaeli R,Aliyan H,Moghadam M,et al. Nano-rod Catalysts: Building MOF Bottles(MIL-101 Family as Heterogeneous Single-site Catalysts) Around Vanadium Oxide Ships[J]. J Mol Catal A:Chem,2013,374/375:46-52.
[14] Schejn A,Mazet T,Falk V,et al.Fe3O4@ZIF-8:Magnetically Recoverable Catalystsby Loading Fe3O4 Nanoparticles Inside a Zinc Imidazolate Framework[J]. Dalton Trans,2015,44(22):10136-10140.
[15] Liu D M,Lu K D,Poon C,et al.Metal-Organic Frameworks as Sensory Materials and Imaging Agents[J]. Inorg Chem,2014,53(4):1916-1924.
[16] Hermes S,Schroder F,Chelmowski R,et al.Selective Nucleation and Growth of Metal-Organic Open Framework Thin Films on Patterned COOF/CF3-Terminated Self-Assembled Monolayers on Au(111)[J]. J Am Chem Soc,2005,127(40):13744-13745.
[17] Bux H,Chmelik C,Krishna R,et al.Ethene/ethane Separation by the MOF Membrane ZIF-8:Molecular Correlation of Permeation, Adsorption,Diffusion[J]. J Membr Sci,2011,369(1/2):284-289.
[18] Zhang F,Zou X Q,Gao X,et al.Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability[J]. Adv Funct Mater,2012,22(17):3583-3590.
[19] Kathuria A,Al-Ghamdi S,Abiad M G,et al.The Influence of Cu3(BTC)2 Metal Organic Framework on the Permeability and Perm-selectivity of PLLA-MOF Mixed Matrix Membranes[J]. J Appl Polym S,2015,132(46):42764-42773.
[20] Shekhah O,Cadiau A,Eddaoudi M. Fabrication and Non-covalent Modification of Highly Oriented Thin Films of a Zeolite-like Metal-Organic Framework(ZMOF) with Rho Topology[J]. Cryst Eng Comm,2015,17(2):290-294.
[21] Cavka J H,Jakobsen S,Olsbye U,et al.A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with ExceptionalStability[J]. J Am Chem Soc,2008,130(42):13850-13851.
[22] Piscopo G,Polyzoidis A,Schwarzer M,et al.Stability of UiO-66 Under Acidic Treatment: Opportunities and Limitations for Post-synthetic Modifications[J]. Micropor Mesopor Mater,2015,208:30-35.
[23] Ramsahye N A,Gao J,Jobic H,et al.Adsorption and Diffusion of Light Hydrocatbons in UiO-66(Zr):A Combination of Experimental and Modeling Tools[J]. J Phys Chem C,2014,118(47):27470-27482.
[24] Valenzano L,Civalleri B,Chavan S,et al.Disclosing the Complex Structure of UiO-66 Metal Organic Framework:A Synergic Combination of Experiment and Theory[J]. Chem Mater,2011,23(7):1700-1718.
[25] Schaate A,Roy P,Godt A,et al.Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals[J]. Chem Eur J,2011,17(24):6643-6651.
[26] Ren J W,Langmi H W,North B C,et al.Modulated Synthesis of Zirconium-Metal Organic Framework(Zr-MOF) for Hydrogen Storage Applications[J]. Int J Hydrogen Energy,2014,39(2):890-895.
[27] Øien S,Wragg D,Reinsch H,et al.Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal-Organic Frameworks[J]. Cryst Growth Des,2014,14(11):5370-5372.
[28] Tsuruoka T,Furukawa S,Takashima Y,et al.Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth[J]. Angew Chem Int Ed,2009,48(26):4739-4743.
[29] Diring S,Furukawa S,Takashima Y,et al.Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes[J]. Chem Mater,2010,22(16):4531-4538.
[30] Han Y T,Liu M,Li K Y,et al.Facile Synthesis of Morphology- and Size-controlled Zirconium Metal-Organic Framework UiO-66:The Role of Hydrofluoric Acid in Crystallization[J]. Cryst Eng Comm,2015,17(33):6434-6440.
[31] Wu H,Chua Y S,Krungleviciute V,et al.Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption[J]. J Am Chem Soc,2013,135(28):10525-10532.
[32] Vermoortele F,Bueken B,Bars G L,et al.Synthesis Modulation as a Tool to Increase the Catalytic Activity of Metal-Organic Frameworks:The Unique Case of UiO-66(Zr)[J]. J Am Chem Soc,2013,135(31):11465-11468.
[33] Shearer G C,Chavan S,Ethiraj J,et al.Tuned to Perfection:Ironing Out the Defects in Metal-Organic Framework UiO-66[J]. Chem Mater,2014,26(14):4068-4071.
[34] Abid H R,Ang H M,Wang Shaobin. Effects of Ammonium Hydroxide on the Structure and Gas Adsorption of Nanosized Zr-MOFs(UiO-66)[J]. Nanoscale,2012,4(10):3089-3094.
[35] Wiersum A D,Soubeyrand-Lenoir E,Yang Qingyuan,et al.An Evaluation of UiO-66 for Gas-based Application[J]. Chem Asian J,2011,6(12):3270-3280.
[36] Katz M J,Brown Z J,Colon Y J,et al.A Facile Synthesis of UiO-66,UiO-67 and Their Derivatives[J]. Chem Commun,2013,49(82):9449-9451.
[37] Ragon F,Horcajada P,Chevreau H,et al.In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66[J]. Inorg Chem,2014,53(5):2491-2500.
[38] Kandiah M,Nilsen M H,Usseglio S,et al.Synthesis and Stability of Tagged UiO-66 Zr-MOFs[J]. Chem Mater,2010,22(24):6632-6640.
[39] Garibay S J,Cohen S M. Isoreticular Synthesis and Modification of Frameworks with the UiO-66 Topology[J]. Chem Commun,2010,46(41):7700-7702.
[40] Biswas S,Zhang J,Li Z B,et al.Enhanced Selectivity of CO2 over CH4 in Sulphonate-, Carboxylate- and Iodo-functionalized UiO-66 Frameworks[J]. Dalton Trans,2013,42(13):4730-4737.
[41] Huang Y T,Qin W P,Li Z,et al.Enhanced Stability and CO2 Affinity of a UiO-66 Type Metal-Organic Framework Decorated with Dimethyl Groups[J]. Dalton Trans,2012,41(31):9283-9285.
[42] Shen L J,Liang R W,Luo M B,et al.Electronic Effects of Ligand Substitution on Metal-Organic Framework Photocatalysts:The Case Study of UiO-66[J]. Phys Chem Chem Phys,2015,17(1):117-121.
[43] Cmarik G E,Kim M,Cohen S M,et al.Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization[J]. Langmuir,2012,28(44):15606-15613.
[44] Fei H H,Shin J W,Meng Y S,et al.Reusable Oxidation Catalysis Using Metal-monocatecholato Speciesin a Robust Metal-Organic Framework[J]. J Am Chem Soc,2014,136(13):4965-4973.
[45] Fei H H,CohenS M. Metalation of a Thiocatechol-Functionalized Zr(Ⅳ)-Based Metal-Organic Framework for Selective C—H Functionalization[J]. J Am Chem Soc,2015,137(6):2191-2194.
[46] Shearer G C,Forselv S,Chavan S,et al.In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67[J]. Top Catal,2013,56(9/10):770-782.
[47] Lau C H,Babarao R,Hill M R. A Route to Drastic Increase of CO2 Uptake in Zr Metal Organic Framework UiO-66[J]. Chem Commun,2013,49(35):3634-3636.
[48] Yuan Q Y,Iersum A D,Llewellyn P L,et al.Functionalizing Porous Zirconium Terephthalate UiO-66(Zr) for Natural Gas Upgrading:A Computational Exploration[J]. Chem Commun,2011,47(34):9603-9605.
[50] Ebrahim A M,Bandosz T J. Ce(Ⅲ) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions[J]. Appl Mater Interfaces,2013,5(21):10565-10573.
[51] Moreira M A,Santos J C,Ferreira A F P,et al. Reverse Shape Selectivity in the Liquid-Phase Adsorption of Xylene Isomers in Zirconium Terephthalate MOF UiO-66[J]. Langmuir,2012,28(13):5715-5723.
[52] Vermoortele F,Ameloot R, Vimont A, et al. An Amino-modified Zr-terephthalate Metal-Organic Framework as an Acid-base Catalyst for Cross-aldol Condensation[J]. Chem Commun,2011,47(5):1521-1523.
[53] Chung Y M,Kim H Y,Ahn W S. Friedel-Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates[J]. Catal Lett,2014,144(5):817-824.
[54] Silva C G,Luz I, Llabrés i Xamena F X, et al. Water Stable Zr-Benzene Dicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation[J]. Chem Eur J,2010,16(36):11133-11138.
[55] He J,Wang J Q,Chen Y J,et al.A Dye-sensitized Pt@UiO-66(Zr) Metal-Organic Framework for Visible-light Photocatalytic Hydrogen Production[J]. Chem Commun,2014,50(53):7063-7066.
[56] Yuan Y P,Yin L S,Cao S W,et al. Improving Photocatalytic Hydrogen Productionof Metal-organic Framework UiO-66 Octahedrons by Dye-Sensitization[J]. Appl Catal B,2015,168/169:572-576.
[57] Sha Z,Sun J L, Sze On Chan H, et al. Bismuth Tungstate Incorporated Zirconium Metal-Organic Framework Composite with Enhanced Visible-light Photocatalytic Performance[J]. RSC Adv,2014,4(110):64977-64984.
[58] Sha Z,Wu J S. Enchanted Visible-Light Photocatalytic Performance of BiOBr/UiO-66 Composite for Dye Degradation with the Assistant of UiO-66[J]. RSC Adv,2015,5(49):39592-39600.
[59] Na K,Choi K M,Yaghi O M,et al.Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts[J]. Nano Lett,2014,14(10):5979-5983.
[60] Choi K M,Na K,Somoriai G A,et al.Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks[J]. J Am Chem Soc,2015,137(24):7810-7816.
[61] Shahat A, Hassana H M A, Azzazy H M E. Optical Metal-Organic Framework Sensor for Selective Discrimination of Some Toxic Metal Ions in Water[J]. Anal Chim Acta,2013,793(2):90-98.
[62] Xu X Y,Yan B. Eu(Ⅲ) Functionalized Zr-based Metal-Organic Framework as Excellent Fluorescent Probe for Cd2+ Detection in Aqueous Environment[J]. Sens Actuators B,2016,222:347-353.
[63] Liu X L,Demir N K,Wu Z T,et al.Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination[J]. J Am Chem Soc,2015,137(22):6999-7002.
[64] Fei H H,Pullen S,Wagner A,et al.Functionalization of Robust Zr(Ⅳ)-based Metal-Organic Framework Films via a Postsynthetic Ligand Exchange[J]. Chem Commun,2015,51(1):66-69.
[65] Chang N,Yan X P. Exploring Reverse Shape Selectivity and Molecular Sieving Effect of Metal-Organic Framework UiO-66 Coated Capillary Column for Gas Chromatographic Separation[J]. J Chromatogr A,2012,1257:116-124.
[66] Zhao WW,Zhang C Y,Yan Z G,et al.Separations of Substituted Benzenes and Polycyclic Aromatichydrocarbons Using Normal- and Reverse-phase High Performance Liquid Chromatography with UiO-66 as the Stationary Phase[J]. J Chromatogr A,2014,1370:121-128.
[67] de Krafft K E,Boyle W S,Burk L M,et al. Zr- and Hf-based Nanoscale Metal-Organic Frameworks as Contrast Agents for Computed Tomography[J]. J Mater Chem,2012,22(35):18139-18141.
[1] 石淑云, 任百祥. 新型杂多酸盐光催化降解亚甲基蓝染料废水[J]. 应用化学, 2016, 33(5): 577-582.
[2] 史建建, 刘小明, 唐星华, 李帅龙. 新型等离子光催化剂纳米金-钛酸锌复合物的制备与光解水制氢性能[J]. 应用化学, 2016, 33(5): 583-590.
[3] 李尔沙, 陈斌, 冯鹏元, 邓瑞平, 彭泽平. 葡萄糖辅助合成碲化铅纳米棒及其表征[J]. 应用化学, 2016, 33(5): 591-598.
[4] 高国锋,李丹丹,郝根彦,李晋平,赵强. 铁基阳极析氧催化剂的研究进展与展望[J]. 应用化学, 2016, 33(5): 504-512.
[5] 赵文鹏,李爱琴,丁三元. 多孔有机聚合物在水处理中的应用[J]. 应用化学, 2016, 33(5): 513-523.
[6] 莫玲超, 李建, 郭兆琦, 李娟利, 胡明刚, 安忠维. 新型吡啶环液晶化合物的合成及性能[J]. 应用化学, 2016, 33(5): 542-548.
[7] 吴剑虹, 陈冬寅, 李飞. 酸化蒙脱土/氯化锌催化叔丁醚和叔丁酯的合成[J]. 应用化学, 2016, 33(5): 565-570.
[8] 储诚灿,苏朝晖. 聚合物负载纳米材料及其在催化领域的应用[J]. 应用化学, 2016, 33(4): 379-390.
[9] 谢发之, 汪雪春, 杨佩佩, 李海斌, 圣丹丹, 胡婷婷, 谢志勇. 纯相钙铝层状双氢氧化物对磷的吸附特性[J]. 应用化学, 2016, 33(4): 473-480.
[10] 鲁岩, 吴思雨, 马百庆, 靳奇峰, 石佳, 于世钧. 含希夫碱侧基聚酯及其锌配合物的合成和性能[J]. 应用化学, 2016, 33(4): 452-458.
[11] 于宗龙, 贾春晓, 路鑫, 韩海港, 辛炳炜. 离子液体@TiO2纳米复合材料的制备及其光催化性能[J]. 应用化学, 2016, 33(4): 459-465.
[12] 丁丁, 王琪, 金方, 陈亚中, 崔鹏, 刘荣, 沈浩. 蒸氨压力对Cu/SiO2催化剂的影响及其草酸二甲酯加氢性能[J]. 应用化学, 2016, 33(4): 466-472.
[13] 周文俊,邓家英. 铁催化的交叉偶联反应研究进展[J]. 应用化学, 2016, 33(3): 245-266.
[14] 邹晓梅, 陈艳, 朱兴旺, 刘高鹏, 郭心玮, 雷琴, 柯小雪, 李帅星, 华英杰, 王崇太. Keggin型铬取代的磷钨杂多阴离子/二氧化钛纳米膜光催化剂的制备及可见光催化性能[J]. 应用化学, 2016, 33(3): 320-329.
[15] 靳廷甲, 章祥林, 徐建. 铁酸锰/腐植酸复合材料制备及其对亚甲基蓝吸附性能[J]. 应用化学, 2016, 33(3): 336-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn