Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (5): 703-711.DOI: 10.19894/j.issn.1000-0518.230332
• Full Papers • Previous Articles Next Articles
Hou-Ran WU1,2, Chun-Ming HOU3, Ti-Gang DUAN2(), Li MA2, Hai-Bing ZHANG2, Jin-Tao WANG2
Received:
2023-10-25
Accepted:
2024-03-16
Published:
2024-05-01
Online:
2024-06-03
Contact:
Ti-Gang DUAN
About author:
duantigang@sunrui.netSupported by:
CLC Number:
Hou-Ran WU, Chun-Ming HOU, Ti-Gang DUAN, Li MA, Hai-Bing ZHANG, Jin-Tao WANG. Electrochemical Properties of Al-Ga-In-Sn-Si Alloy Anodes and Seawater Dissolved Oxygen Batteries[J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 703-711.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230332
Samples | Ecorr/V(vs.Ag/AgCl) | Icorr/(mA·cm-2) | -βc/(mV·dec-1) | βa/(mV·dec-1) | Rp/(Ω·cm2) |
---|---|---|---|---|---|
Al-Ga-In-Sn-Si | -1.613 | 1.431 | 406.2 | 282.9 | 50.6 |
Table 1 Corrosion parameters of Al-Ga-In-Sn-Si alloy in sea water
Samples | Ecorr/V(vs.Ag/AgCl) | Icorr/(mA·cm-2) | -βc/(mV·dec-1) | βa/(mV·dec-1) | Rp/(Ω·cm2) |
---|---|---|---|---|---|
Al-Ga-In-Sn-Si | -1.613 | 1.431 | 406.2 | 282.9 | 50.6 |
Parameters | Rs/(Ω·cm2) | CPE1/(F·cm-2) | n1 | Rt/(Ω·cm2) | CPE2/(F·cm-2) | n2 | R2/(Ω·cm2) | L2/(H·cm2) | Rl/(Ω·cm2) |
---|---|---|---|---|---|---|---|---|---|
5.68 | 5.21×10-7 | 0.79 | 506.7 | 2.54×10-6 | 1 | 34.26 | 1.99×10-4 | 5.49×10-5 |
Table 2 Fitted EIS parameters
Parameters | Rs/(Ω·cm2) | CPE1/(F·cm-2) | n1 | Rt/(Ω·cm2) | CPE2/(F·cm-2) | n2 | R2/(Ω·cm2) | L2/(H·cm2) | Rl/(Ω·cm2) |
---|---|---|---|---|---|---|---|---|---|
5.68 | 5.21×10-7 | 0.79 | 506.7 | 2.54×10-6 | 1 | 34.26 | 1.99×10-4 | 5.49×10-5 |
Battery | In indoor static seawater | In real dynamic seawater | ||||
---|---|---|---|---|---|---|
2000 Ω | 1000 Ω | 500 Ω | 2000 Ω | 1000 Ω | 500 Ω | |
Average voltage/V | 1.73 | 1.63 | 1.51 | 1.78 | 1.64 | 1.53 |
Energy density/(W·h·kg-1) | 384.51 | 549.85 | 481.4 | 515.21 | 653.44 | 431.33 |
Table 3 Battery parameters for discharge of seawater batteries in indoor static and real dynamic seawater
Battery | In indoor static seawater | In real dynamic seawater | ||||
---|---|---|---|---|---|---|
2000 Ω | 1000 Ω | 500 Ω | 2000 Ω | 1000 Ω | 500 Ω | |
Average voltage/V | 1.73 | 1.63 | 1.51 | 1.78 | 1.64 | 1.53 |
Energy density/(W·h·kg-1) | 384.51 | 549.85 | 481.4 | 515.21 | 653.44 | 431.33 |
1 | TZENG Y C, CHEN R Y. The effect of the Zn content on the electrochemical performance of Al-Zn-Sn-Ga alloys[J]. Mater Chem Phys, 2023, 299: 127510. |
2 | ZHAO Q, ZHENG J X, DENG Y, et al. Regulating the growth of aluminum electrodeposits: towards anode-free Al batteries[J]. J Mater Chem A, 2020, 8(44): 23231-23238. |
3 | 冯壮壮, 梅迪, 朱世杰, 等. 一次镁空气电池阳极材料研究进展[J]. 材料开发与应用, 2022, 37(6): 12-21. |
FENG Z Z, MEI D, ZHU S J, et al. Research progress of anode materials for primary magnesium-air batteries[J]. Dev Appl Mater, 2022, 37(6): 12-21. | |
4 | ZHANG Z K, WANG Y B, WEI X F, et al. High energy efficiency and high discharge voltage of 2N-purity Al-based anodes for Al-air battery by simultaneous addition of Mn, Zn and Ga[J]. J Power Sources, 2023, 563: 232845. |
5 | WANG Y Y, LIU H L, JIA Z M, et al. The electrochemical performance of Al-Mg-Ga-Sn-xBi alloy used as the anodic material for Al-air battery in KOH electrolytes[J]. Crystals, 2022, 12(12): 1785. |
6 | ABBAS M, SADAWY M, HOSNY A. Microstructure and electrochemical properties of Al-5Zn-0.2Sn-0.2Bi-xSb as a novel electrode for batteries applications[J]. J Alloys Compd, 2022, 923: 166303. |
7 | LIANG R, SU Y, SUI X L, et al. Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery[J]. J Solid State Electrochem, 2019, 23: 53-62. |
8 | ZHOU S G, TIAN C, ALZOABI S, et al. Performance of an Al-0.08Sn-0.08Ga-xMg alloy as an anode for Al-air batteries in alkaline electrolytes[J]. J Mater Sci, 2020, 55: 11477-11488. |
9 | WU Z B, ZHANG H T, GUO C, et al. Effects of indium, gallium, or bismuth additions on the discharge behavior of Al-Mg-Sn-based alloy for Al-air battery anodes in NaOH electrolytes[J]. J Solid State Electrochem, 2019, 23(8): 2483-2491. |
10 | SUN Z G, LU H M. Performance of Al-0.5In as anode for Al-air battery in inhibited alkaline solutions[J]. J Electrochem Soc, 2015, 162(8): A1617. |
11 | ZHANG H T, ZHENG Y Q, YIN G, et al. The influence of Ga, Sn, or Bi addition on the electrochemical behavior and discharge performance of Al-Zn-In anodes for Al-air batteries[J]. J Mater Sci, 2021, 56(18): 11011-11026. |
12 | ZHUANG Z H, FENG Y, PENG C Q, et al. Effect of Ga on microstructure and electrochemical performance of Al-0.4Mg-0.05Sn-0.03Hg alloy as anode for Al-air batteries[J]. Trans Nonferrous Met Soc China, 2021, 31(9): 2558-2569. |
13 | PARK I J, CHOI S R, KIM J G. Aluminum anode for aluminum-air battery-part Ⅱ: influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution[J]. J Power Sources, 2017, 357: 47-55. |
14 | ZHANG C, WANG R C, FENG Y, et al. Effects of alloying elements on electrochemical performance of aluminum anodes[J]. J Cent South Univ Technol (Nat Sci), 2012, 43(1): 81-86. |
15 | HE J G, WEN J B, LI X D, et al. Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes[J]. Trans Nonferrous Met Soc China, 2011, 21(7): 1580-1586. |
16 | WANG Q, MIAO H, XUE Y J, et al. Performances of an Al-0.15Bi-0.15Pb-0.035Ga alloy as an anode for Al-air batteries in neutral and alkaline electrolytes[J]. RSC Adv, 2017, 7(42): 25838-25847. |
17 | HERRAIZ-CARDONA I, ORTEGA E, PÉREZ-HERRANZ V. Impedance study of hydrogen evolution on Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits[J]. Electrochim Acta, 2011, 56(3): 1308-1315. |
18 | WU Z, ZHANG H, NAGAUMI H, et al. Effect of microstructure evolution on the discharge characteristics of Al-Mg-Sn-based anodes for Al-air batteries[J]. J Power Sources, 2022, 521: 230928. |
19 | WU Z B, ZHANG H T, ZOU J, et al. Effect of microstructure on discharge performance of Al-0.8Sn-0.05Ga-0.9Mg-1.0Zn (wt.%) alloy as anode for seawater-activated battery[J]. Mater Corros, 2020, 71(10): 1680-1690. |
20 | ZHANG C, CAI Z Y, WANG R C, et al. Enhancing the electrochemical performance of Al-Mg-Sn-Ga alloy anode for Al-air battery by solution treatment[J]. J Electrochem Soc, 2021, 168(3): 030519. |
21 | AN Q, HU H Y, LI N, et al. Strategies for improving flow rate control of hydrogen generated by Al-rich alloys for on-board applications[J]. Int J Hydrogen Energy, 2019, 44(51): 27695-27703. |
22 | AN Q, GAO Q, WANG H C, et al. Insight into the indium-related morphology transformation and application for hydrogen production of Al-rich alloys[J]. J Alloys Compd, 2020, 842: 155864. |
23 | EVANS D S, PRINCE A. Thermal analysis of Ga-In-Sn system[J]. Met Sci, 1978, 12(9): 411-414. |
24 | DAENEKE T, KHOSHMANESH K, MAHMOOD N, et al. Liquid metals: fundamentals and applications in chemistry[J]. Chem Soc Rev, 2018, 47(11): 4073-4111. |
25 | XU S, ZHAO X, LIU J. Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature[J]. Renewable Sustainable Energy Rev, 2018, 92: 17-37. |
26 | PANIAGUA ROJAS J, GONZáLEZ-HERNáNDEZ J E, CUBERO-SESIN J M, et al. Benchmarking of aluminum alloys processed by high-pressure torsion: Al-3%Mg alloy for high-energy density Al-air batteries[J]. Energy Fuels, 2023, 37(6): 4632-4640. |
27 | SPERANDIO G F, SANTOS C M L, GALDINO A. Influence of silicon on the corrosion behavior of Al-Zn-In sacrificial anode[J]. J Mater Res Technol, 2021, 15: 614-622. |
28 | MA J J, WEN J B, REN F Z, et al. Electrochemical performance of Al-Mg-Sn based alloys as anode for Al-air battery[J]. J Electrochem Soc, 2016, 163(8): A1759-A1764. |
29 | 王金涛, 段体岗, 郭建章, 等. 三维碳纤维基复合材料及其在海水溶解氧电池应用性能研究[J]. 材料导报, 2024, 38(4): 218-223. |
WANG J T, DUAN T G, GUO J Z, et al. Three-dimensional carbon fiber matrix composites and application performance in seawater dissolved oxygen batteries[J]. Mater Rep, 2024, 38(4): 218-223. | |
30 | KAEWMANEEKUL T, LOTHONGKUM G. Effect of aluminium on the passivation of zinc-aluminium alloys in artificial seawater at 80 ℃[J]. Corros Sci, 2013, 66: 67-77. |
31 | ZHU C, YANG H X, WU A Q, et al. Modified alkaline electrolyte with 8-hydroxyquinoline and ZnO complex additives to improve Al-air battery[J]. J Power Sources, 2019, 432: 55-64. |
32 | WU Z B, ZHANG H T, ZOU J, et al. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt.%) anode for Al-air battery by directional solidification technique and subsequent rolling process[J]. J Alloys Compd, 2020, 827: 154272. |
33 | WANG Q, MIAO H, XUE Y J, et al. Performances of an Al-0.15 Bi-0.15 Pb-0.035 Ga alloy as an anode for Al-air batteries in neutral and alkaline electrolytes[J]. RSC Adv, 2017, 7(42): 25838-25847. |
34 | 张一晗, 张海兵, 辛永磊, 等. Al-Zn-In-Mg-Ti-Ga-Mn牺牲阳极在极地低温环境中的电化学性能[J]. 中国有色金属学报, 2023, 33(4): 1209-1219. |
ZHANG Y H, ZHANG H B, XIN Y L, et al. Electrochemical performance of Al-Zn-ln-Mg-Ti-Ga-Mn sacrificial anode in polar low temperature environment[J]. Chin J Nonferrous Met, 2023, 33(4): 1209-1219. | |
35 | LI L, LIU H, YAN Y, et al. Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys[J]. Int J Hydrogen Energy, 2019, 44(23): 12073-12084. |
[1] | Dong-Yu ZHANG, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Antimony⁃Based Anode for Sodium/Potassium Ion Batteries: Failure Analysis and Solutions [J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 616-636. |
[2] | Rui-Yao WU, Dan-Dan OUYANG, Li-Li AI, An-Jie LIU, Hui ZHU, Xiao-Xin GAO, Jiao YIN. Research Progress of Biomass-Based Hard Carbon Anodes for Sodium-Ion Storage [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 496-511. |
[3] | Sheng CHEN, Zu-Fei HU, Hong-Mei CAO, Zhen-Hua ZHAO, Yu-Dong ZHANG. Synthesis and Properties of Mg‑Doped Ni‑Rich Ternary Cathode Material LiNi0.90Co0.05Mn0.05O2 [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 568-576. |
[4] | Ting-Ting GU, Ke ZHANG, Xin-Zhou ZHANG, Yang LIU, Wei-Cai SUN, Ai-Dong TAN, Jian-Guo LIU. Research Progress on Anodic Titanium‑Based Gas Diffusion Layer in Proton Exchange Membrane Electrolysis Cell [J]. Chinese Journal of Applied Chemistry, 2024, 41(3): 365-376. |
[5] | Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639. |
[6] | Fang-Zheng HU, Xing GAO, Lei LIU, Tian-Heng YUAN, Ning CAO, Kai LI, Ya-Tao WANG, Jian-Hua LI, Hui-Qin LIAN, Xiao-Dong WANG, Xiu-Guo CUI. Advances in Black Phosphorus Anode Advantages and Optimization in Li-ion Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 571-582. |
[7] | Xue-Jian SHI, Wan-Qiang LIU, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Sb-based Anode Materials for Potassium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 210-228. |
[8] | Jun-Ling MENG, Chuan TIAN, Na XU, Li-Na ZHAO, Hai-Xia ZHONG, Zhan-Lin XU. Research Progress of in Situ Exsolution of Electrode Surface of Solid Oxide Fuel Cells [J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1335-1346. |
[9] | Fu-Yang WANG, Wei-Ming SONG, Li SUN, Jian FENG, Jun YE, Zhi-Qi YANG. Controllable Construction of Porous Nanocube FeSe2/Graphene Composite for Efficient Na⁃Ion Storage [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 779-786. |
[10] | Yu MENG, Qing ZHANG, Wen-Hao PENG, Xiao-Fei ZHU, De-Feng ZHOU. Preparation and Electrochemical Performance of Pr0.8Sr0.2Fe0.7Ni0.3O3-δ ⁃Pr1.2Sr0.8Ni0.6Fe0.4O4+δ Composite Cathode [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 797-808. |
[11] | Xiao-Feng WU, De-Shun CHEN, Wei MA, Ke-Ke HUANG. WO3/Fe2TiO5 Composite Photoanode Deposited via Electrospray for Enhanced Photoelectrochemical Water Splitting [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 694-696. |
[12] | Ya-Wei TANG, Lan-Lan XU, Xiao-Juan LIU. Effectively Improving the Electrocatalytic Activity of PrBaMn2O5+δ Anode by Doping Co, Ni and Fe [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1543-1553. |
[13] | CHENG Guang-Zeng, LIU Shuai, WANG Huan-Lei. Potential High-Performance Anode Material for Potassium Ion Batteries:Antimony [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 170-180. |
[14] | WANG Jinying, QU Jiangying, LI Jielan, TANG Zhanlei, ZANG Yunhao, WANG Tao, GU Jianfeng, ZHOU Gang, GAO Feng. Two-Step Coating Synthesis of Silicon/Carbon Composite Based on Coal Tar Pitch and Its Lithium Battery Performance [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 562-569. |
[15] | WANG Chunli,SUN Lianshan,ZHONG Ming,WANG Limin,CHENG Yong. Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 387-404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||