Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (5): 625-639.DOI: 10.19894/j.issn.1000-0518.220284
• Review • Previous Articles Next Articles
Bing-Shuai CHEN1, Hai-Tao ZHUO2(), Shu HUANG3, Shao-Jun CHEN1()
Received:
2022-08-25
Accepted:
2023-03-08
Published:
2023-05-01
Online:
2023-05-26
Contact:
Hai-Tao ZHUO,Shao-Jun CHEN
About author:
haitaozhuo@163.comSupported by:
Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220284
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CS | 20 | 89 | 1 969 mA·h/g after 100 cycles | 500 | 2015 | [ | |
PVDF-b-PTFE | 5 | 1 | 250 cycles | 4 200 | 2020 | [ | |
PSA | 20 | 1.2 | 72 | 2 371 mA·h/g after 100 cycles | 1 800 | 2020 | [ |
PSEA | 10 | 1.5 | 85.1 | 400 cycles | 2 100 | 2022 | [ |
C-CS | 8 | 89 | 950 mA·h/g after 50 cycles | 500 | 2014 | [ | |
CGG | 20 | 0.8 | 1 138 mA·h/g after 200 cycles | 1 000 | 2019 | [ | |
1-CMT | 20 | 0.75 | 90.96 | 1 176 mA·h/g after 200 cycles | 2 000 | 2022 | [ |
Table 1 Electrochemical properties of linear silicon-based anode binder
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CS | 20 | 89 | 1 969 mA·h/g after 100 cycles | 500 | 2015 | [ | |
PVDF-b-PTFE | 5 | 1 | 250 cycles | 4 200 | 2020 | [ | |
PSA | 20 | 1.2 | 72 | 2 371 mA·h/g after 100 cycles | 1 800 | 2020 | [ |
PSEA | 10 | 1.5 | 85.1 | 400 cycles | 2 100 | 2022 | [ |
C-CS | 8 | 89 | 950 mA·h/g after 50 cycles | 500 | 2014 | [ | |
CGG | 20 | 0.8 | 1 138 mA·h/g after 200 cycles | 1 000 | 2019 | [ | |
1-CMT | 20 | 0.75 | 90.96 | 1 176 mA·h/g after 200 cycles | 2 000 | 2022 | [ |
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CS-PAANa | 30 | 0.22 | 85.96 | 1 608 mA·h/g after 100 cycles | 420 | 2019 | [ |
CS-g-GA | 20 | 0.5~0.6 | 73.11 | 1 868 mA·h/g after 350 cycles | 2 100 | 2022 | [ |
GA-g-PAA | 10 | 1~1.2 | 82.7 | 2 196.1 mA·h/g after 150 cycles | 400 | 2021 | [ |
GA-g-PAA/P | 10 | 100 cycles | 400 | 2021 | [ | ||
PVA-g-P (AA-LiAA-HEA) | 10 | 90.9 | 2 265 mA·h/g after 200 cycles | 1 000 | 2020 | [ |
Table 2 Electrochemical properties of branched silicon-based anode binder
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CS-PAANa | 30 | 0.22 | 85.96 | 1 608 mA·h/g after 100 cycles | 420 | 2019 | [ |
CS-g-GA | 20 | 0.5~0.6 | 73.11 | 1 868 mA·h/g after 350 cycles | 2 100 | 2022 | [ |
GA-g-PAA | 10 | 1~1.2 | 82.7 | 2 196.1 mA·h/g after 150 cycles | 400 | 2021 | [ |
GA-g-PAA/P | 10 | 100 cycles | 400 | 2021 | [ | ||
PVA-g-P (AA-LiAA-HEA) | 10 | 90.9 | 2 265 mA·h/g after 200 cycles | 1 000 | 2020 | [ |
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
L-co-PAA | 20 | 0.6~0.8 | 84 | 939 mA·h/g after 1000 cycles | 840 | 2022 | [ |
OS-PAA | 10 | 62.39 | 1 386.2 mA·h/g after 100 cycles | 200 | 2021 | [ | |
P(AA-co-nBA) | 15 | 0.55~0.68 | 72.5 | 960 mA·h/g after 100 cycles | 500 | 2020 | [ |
PAA-borax | 20 | 1.2~1.5 | 85 | 1 649 mA·h/g after 100 cycles | 2 000 | 2020 | [ |
PAA-co-SN | 20 | 0.8 | 79.3 | 1 580 mA·h/g after 500 cycles | 840 | 2022 | [ |
PG-c-ECH | 10 | 1.77 | 81.6 | 2 060 mA·h/g after 200 cycles | 2 000 | 2021 | [ |
β-CD-CMC | 20 | 85.11 | 1 702 mA·h/g after 200 cycles | 2 100 | 2022 | [ | |
PAM | 20 | 0.6 | 1 526 mA·h/g after 500 cycles | 716 | 2020 | [ | |
CMC-NaPAA-PAM | 20 | 0.75 | 84 | 1 210.7 mA·h/g after 150 cycles | 420 | 2019 | [ |
GG/XNBR | 20 | 0.53 | 1 929 mA·h/g after 100 cycles | 1 000 | 2021 | [ | |
SHPET | 20 | 1.2 | 870 mA·h/g after 250 cycles | 4 200 | 2021 | [ | |
PAA-TUEG | 10 | 0.5 | 87.2 | 2 744.3 mA·h/g after 300 cycles | 2 100 | 2022 | [ |
CMC/TU | 0.8~1 | 89.9 | 1 059 mA·h/g after 150 cycles | 840 | 2022 | [ | |
PAA-UPy | 20 | 0.4~0.6 | 86.4 | 2 638 mA·h/g after 110 cycles | 2 100 | 2018 | [ |
UPy-PEG-UPy | 15 | 81 | 1 454 mA·h/g after 400 cycles | 2018 | [ | ||
PAU-g-PEG | 20 | 0.5~1 | 70.4 | 1 450.2 mA·h/g after 350 cycles | 2 100 | 2020 | [ |
CPAU | 10 | 87.1 | 2 768.8 mA·h/g after 150 cycles | 840 | 2021 | [ | |
CA-PAA | 10 | 0.6 | 89.5 | 300 cycles | 420 | 2021 | [ |
PAA-β-CDp | 20 | 85.9 | 2 326.4 mA·h/g after 100 cycles | 200 | 2022 | [ | |
GCS-I-OSA | 20 | 0.35~0.45 | 77.1 | 2 316 mA·h/g after 100 cycles | 840 | 2021 | [ |
CS-EDTA | 62.8 | 721 mA·h/g after 200 cycles | 1 000 | 2022 | [ | ||
SHA | 20 | 0.5~0.7 | 92.67 | 1 407 mA·h/g after 100 cycles | 4 000 | 2022 | [ |
γCDp/Py-PAA | 10 | 1.35~1.45 | 88.2 | 300 cycles | 2 100 | 2022 | [ |
PAA-PEI | 20 | 0.5~0.7 | 2 606 mA·h/g after 100 cycles | 840 | 2021 | [ | |
PAA-PEI-c | 20 | 100 cycles | 1 400 | 2022 | [ | ||
TEGPAA-TA | 10 | 0.6 | 83.2 | 100 cycles | 1 330 | 2021 | [ |
c-Pec-g-PAAm | 15 | 1.2 | 729 mA·h/g after 300 cycles | 2 100 | 2020 | [ | |
PAA-BFPU | 15 | 1.0 | >89 | 200 cycles | 2 000 | 2020 | [ |
Table 3 Electrochemical properties of cross-linked network silicon-based anode binder
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
L-co-PAA | 20 | 0.6~0.8 | 84 | 939 mA·h/g after 1000 cycles | 840 | 2022 | [ |
OS-PAA | 10 | 62.39 | 1 386.2 mA·h/g after 100 cycles | 200 | 2021 | [ | |
P(AA-co-nBA) | 15 | 0.55~0.68 | 72.5 | 960 mA·h/g after 100 cycles | 500 | 2020 | [ |
PAA-borax | 20 | 1.2~1.5 | 85 | 1 649 mA·h/g after 100 cycles | 2 000 | 2020 | [ |
PAA-co-SN | 20 | 0.8 | 79.3 | 1 580 mA·h/g after 500 cycles | 840 | 2022 | [ |
PG-c-ECH | 10 | 1.77 | 81.6 | 2 060 mA·h/g after 200 cycles | 2 000 | 2021 | [ |
β-CD-CMC | 20 | 85.11 | 1 702 mA·h/g after 200 cycles | 2 100 | 2022 | [ | |
PAM | 20 | 0.6 | 1 526 mA·h/g after 500 cycles | 716 | 2020 | [ | |
CMC-NaPAA-PAM | 20 | 0.75 | 84 | 1 210.7 mA·h/g after 150 cycles | 420 | 2019 | [ |
GG/XNBR | 20 | 0.53 | 1 929 mA·h/g after 100 cycles | 1 000 | 2021 | [ | |
SHPET | 20 | 1.2 | 870 mA·h/g after 250 cycles | 4 200 | 2021 | [ | |
PAA-TUEG | 10 | 0.5 | 87.2 | 2 744.3 mA·h/g after 300 cycles | 2 100 | 2022 | [ |
CMC/TU | 0.8~1 | 89.9 | 1 059 mA·h/g after 150 cycles | 840 | 2022 | [ | |
PAA-UPy | 20 | 0.4~0.6 | 86.4 | 2 638 mA·h/g after 110 cycles | 2 100 | 2018 | [ |
UPy-PEG-UPy | 15 | 81 | 1 454 mA·h/g after 400 cycles | 2018 | [ | ||
PAU-g-PEG | 20 | 0.5~1 | 70.4 | 1 450.2 mA·h/g after 350 cycles | 2 100 | 2020 | [ |
CPAU | 10 | 87.1 | 2 768.8 mA·h/g after 150 cycles | 840 | 2021 | [ | |
CA-PAA | 10 | 0.6 | 89.5 | 300 cycles | 420 | 2021 | [ |
PAA-β-CDp | 20 | 85.9 | 2 326.4 mA·h/g after 100 cycles | 200 | 2022 | [ | |
GCS-I-OSA | 20 | 0.35~0.45 | 77.1 | 2 316 mA·h/g after 100 cycles | 840 | 2021 | [ |
CS-EDTA | 62.8 | 721 mA·h/g after 200 cycles | 1 000 | 2022 | [ | ||
SHA | 20 | 0.5~0.7 | 92.67 | 1 407 mA·h/g after 100 cycles | 4 000 | 2022 | [ |
γCDp/Py-PAA | 10 | 1.35~1.45 | 88.2 | 300 cycles | 2 100 | 2022 | [ |
PAA-PEI | 20 | 0.5~0.7 | 2 606 mA·h/g after 100 cycles | 840 | 2021 | [ | |
PAA-PEI-c | 20 | 100 cycles | 1 400 | 2022 | [ | ||
TEGPAA-TA | 10 | 0.6 | 83.2 | 100 cycles | 1 330 | 2021 | [ |
c-Pec-g-PAAm | 15 | 1.2 | 729 mA·h/g after 300 cycles | 2 100 | 2020 | [ | |
PAA-BFPU | 15 | 1.0 | >89 | 200 cycles | 2 000 | 2020 | [ |
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CG | 10 | 80 | 1 500 mA·h/g after 700 cycles | 840 | 2018 | [ | |
ESVCA | 40 | 0.53 | 1 786 mA·h/g after 200 cycles | 500 | 2019 | [ | |
PPP | 20 | 0.4 | 200 cycles | 840 | 2020 | [ | |
PAAA | 25 | 1.5 | 1 000 mA·h/g after 300 cycles | 750 | 2018 | [ | |
CS-g-PANI | 25 | 0.8~0.9 | 72.4 | 1 091 mA·h/g after 200 cycles | 4 200 | 2020 | [ |
Alg-g-PAMAT | 15 | 1.2 | 701.2 mA·h/g after 200 cycles | 2 100 | 2022 | [ | |
PF-co-PDs | 1 250 mA·h/g after 500 cycles | 420 | 2020 | [ | |||
PFP-g-PEG | 10 | 0.6 | 605 mA·h/g after 1000 cycles | 1 400 | 2017 | [ | |
PFPQDA | 33 | 0.8 | 72.3 | 2 227 mA·h/g after 150 cycles | 840 | 2022 | [ |
Table 4 Electrochemical properties of conjugated structural silicon-based negative bonding agents
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CG | 10 | 80 | 1 500 mA·h/g after 700 cycles | 840 | 2018 | [ | |
ESVCA | 40 | 0.53 | 1 786 mA·h/g after 200 cycles | 500 | 2019 | [ | |
PPP | 20 | 0.4 | 200 cycles | 840 | 2020 | [ | |
PAAA | 25 | 1.5 | 1 000 mA·h/g after 300 cycles | 750 | 2018 | [ | |
CS-g-PANI | 25 | 0.8~0.9 | 72.4 | 1 091 mA·h/g after 200 cycles | 4 200 | 2020 | [ |
Alg-g-PAMAT | 15 | 1.2 | 701.2 mA·h/g after 200 cycles | 2 100 | 2022 | [ | |
PF-co-PDs | 1 250 mA·h/g after 500 cycles | 420 | 2020 | [ | |||
PFP-g-PEG | 10 | 0.6 | 605 mA·h/g after 1000 cycles | 1 400 | 2017 | [ | |
PFPQDA | 33 | 0.8 | 72.3 | 2 227 mA·h/g after 150 cycles | 840 | 2022 | [ |
1 | WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127. |
2 | FAN E, LI L, WANG Z, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chem Rev, 2020, 120(14): 7020-7063. |
3 | WANG C, YANG C, ZHENG Z. Toward practical high-energy and high-power lithium battery anodes: present and future[J]. Adv Sci (Weinh), 2022, 9(9): e2105213. |
4 | MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Lett, 2021, 6(2): 621-630. |
5 | XIAO Z, WANG C, SONG L, et al. Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries[J]. J Solid State Electrochem, 2022, 26(5): 1125-1136. |
6 | YAN Z, JIANG J, ZHANG Y, et al. Scalable and low-cost synthesis of porous silicon nanoparticles as high-performance lithium-ion battery anode[J]. MT Nano, 2022, 18: 100175. |
7 | AN W, HE P, CHE Z, et al. Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes[J]. ACS Appl Mater Interfaces, 2022, 14(8): 10308-10318. |
8 | YANG Z, DU Y, YANG Y, et al. Large-scale production of highly stable silicon monoxide nanowires by radio-frequency thermal plasma as anodes for high-performance Li-ion batteries[J]. J Power Sources, 2021, 497: 229906. |
9 | WANG H C, HSU C M, GU B, et al. Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries[J]. Nanoscale, 2021, 13(44): 18626-18631. |
10 | ZHUO Y, SUN H, UDDIN M H, et al. An additive-free silicon anode in nanotube morphology as a model lithium ion battery material[J]. Electrochim Acta, 2021, 388: 138522. |
11 | TANG J, YIN Q, WANG Q, et al. Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries[J]. Nanoscale, 2019, 11(22): 10984-10991. |
12 | WANG F, SUN L, ZI W, et al. Solution synthesis of porous silicon particles as an anode material for lithium ion batteries[J]. Chem, 2019, 25(38): 9071-9077. |
13 | WU Q, SHI B, BARENO J, et al. Investigations of Si thin films as anode of lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(4): 3487-3494. |
14 | YANG Y, WU S, ZHANG Y, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chem Eng J, 2021, 406: 126807. |
15 | MA Y, MA J, CUI G. Small things make big deal: powerful binders of lithium batteries and post-lithium batteries[J]. Energy Storage Mater, 2019, 20: 146-175. |
16 | RAJEEVAN S, JOHN S, GEORGE S C. The effect of poly(vinylidene fluoride) binder on the electrochemical performance of graphitic electrodes[J]. J Energy Storage, 2021, 39: 102654. |
17 | ZHAO X, NIKETIC S, YIM C H, et al. Revealing the role of poly(vinylidene fluoride) binder in Si/graphite composite anode for Li-ion batteries[J]. ACS Omega, 2018, 3(9): 11684-11690. |
18 | MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid[J]. ACS Appl Mater Inter, 2010, 2(11): 3004-3010. |
19 | LÜ L, LOU H, XIAO Y, et al. Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries[J]. RSC Adv, 2018, 8(9): 4604-4609. |
20 | HOCHGATTERER N S, SCHWEIGER M R, KOLLER S, et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability[J]. Electrochem Solid ST, 2008, 11(5): A76-A80. |
21 | KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334(6052): 75-79. |
22 | CHEN C, LEE S H, CHO M, et al. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries[J]. ACS Appl Mater Inter, 2016, 8(4): 2658-2665. |
23 | WENZEL V, NIRSCHL H, NÖTZEL D. Challenges in lithium-ion-battery slurry preparation and potential of modifying electrode structures by different mixing processes[J]. Energy Technol, 2015, 3(7): 692-698. |
24 | WANG X, LIU S, ZHANG Y, et al. Highly elastic block copolymer binders for silicon anodes in lithium-ion batteries[J]. ACS Appl Mater Inter, 2020, 12(34): 38132-38139. |
25 | JUNG C H, KIM K H, HONG S H. Stable silicon anode for lithium-ion batteries through covalent bond formation with a binder via esterification[J]. ACS Appl Mater Inter, 2019, 11(30): 26753-26763. |
26 | PAN Y, GE S, RASHID Z, et al. Adhesive polymers as efficient binders for high-capacity silicon electrodes[J]. ACS Appl Energy Mater, 2020, 3(4): 3387-3396. |
27 | HU L, JIN M, ZHANG Z, et al. Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries[J]. Adv Funct Mater, 2022: 2111560. |
28 | YUE L, ZHANG L, ZHONG H. Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries[J]. J Power Sources, 2014, 247: 327-331. |
29 | HU S, CAI Z, HUANG T, et al. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries[J]. ACS Appl Mater Inter, 2019, 11(4): 4311-4317. |
30 | REN X, HUANG T, YU A. Carboxymethylated tamarind polysaccharide gum as a green binder for silicon-based lithium-ion battery anodes[J]. Electrochem Commun, 2022, 136: 107241. |
31 | GAO Y, QIU X, WANG X, et al. Chitosan-g-poly(acrylic acid) copolymer and its sodium salt as stabilized aqueous binders for silicon anodes in lithium-ion batteries[J]. ACS Sustain Chem Eng, 2019, 7(19): 16274-16283. |
32 | RAJEEV K K, JANG W, KIM S, et al. Chitosan-grafted-gallic acid as a nature-inspired multifunctional binder for high-performance silicon anodes in lithium-ion batteries[J]. ACS Appl Energy Mater, 2022, 5(3): 3166-3178. |
33 | HE J, ZHANG L, ZHONG H. Enhanced adhesion and electrochemical performance of Si anodes with gum arabic grafted poly(acrylic acid) as a water-soluble binder[J]. Polym Int, 2021, 70(12): 1668-1679. |
34 | ZHONG H, HE J, ZHANG L. Crosslinkable aqueous binders containing arabic gum-grafted-poly(acrylic acid) and branched polyols for Si anode of lithium-ion batteries[J]. Polymer, 2021, 215: 123377. |
35 | HE J, ZHANG L. Polyvinyl alcohol grafted poly(acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode[J]. J Alloys Compd, 2018, 763: 228-240. |
36 | LIU S, ZHANG L. Partially lithiated ternary graft copolymer with enhanced elasticity as aqueous binder for Si anode[J]. J Appl Polym Sci, 2020, 138(10): e49950. |
37 | LEE J I, KANG H, PARK K H, et al. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries[J]. Small, 2016, 12(23): 3119-3127. |
38 | JIANG S, HU B, SHI Z, et al. Re-engineering poly(acrylic acid) binder toward optimized electrochemical performance for silicon lithium-ion batteries: branching architecture leads to balanced properties of polymeric binders[J]. Adv Funct Mater, 2019, 30(10): 1908558. |
39 | YUAN J M, REN W F, WANG K, et al. Ultrahighly elastic lignin-based copolymers as an effective binder for silicon anodes of lithium-ion batteries[J]. ACS Sustain Chem Eng, 2021, 10(1): 166-176. |
40 | HU X, LIANG K, LI J, et al. A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries[J]. Mater Today Commun, 2021, 28: 102530. |
41 | SON J, VO T N, CHO S, et al. Acrylic random copolymer and network binders for silicon anodes in lithium-ion batteries[J]. J Power Sources, 2020, 458: 228054. |
42 | CAO P F, YANG G, LI B, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes[J]. ACS Energy Lett, 2019, 4(5): 1171-1180. |
43 | WANG S, DUAN Q, LEI J, et al. Slime-inspired polyacrylic acid-borax crosslinked binder for high-capacity bulk silicon anodes in lithium-ion batteries[J]. J Power Sources, 2020, 468: 228365. |
44 | LI Z, WAN Z, ZENG X, et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries[J]. Nano Energy, 2021, 79: 105430. |
45 | JIANG H W, YANG Y, NIE Y M, et al. Cross-linked β-CD-CMC as an effective aqueous binder for silicon-based anodes in rechargeable lithium-ion batteries[J]. RSC Adv, 2022, 12(10): 5997-6006. |
46 | SU T T, REN W F, YUAN J M, et al. Fabrication of polyacrylic acid-based composite binders with strong binding forces on copper foils for silicon anodes in lithium-ion batteries[J]. J Ind Eng Chem, 2022, 109: 521-529. |
47 | WOO H, PARK K, KIM J, et al. 3D meshlike polyacrylamide hydrogel as a novel binder system via in situ polymerization for high-performance Si-based electrode[J]. Adv Mater Interfaces, 2019, 7(2): 1901475. |
48 | YU L, LIU J, HE S, et al. A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries[J]. J Phy Chem Solids, 2019, 135: 109113. |
49 | GENDENSUREN B, HE C, OH E S. Sulfonation of alginate grafted with polyacrylamide as a potential binder for high-capacity Si/C anodes[J]. RSC Adv, 2020, 10(62): 37898-37904. |
50 | ZHAO E, GUO Z, LIU J, et al. A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries[J]. Electrochim Acta, 2021, 387: 138491. |
51 | XU Z, YANG J, ZHANG T, et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2(5): 950-961. |
52 | TANG R, ZHENG X, ZHANG Y, et al. Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries[J]. Ionics, 2020, 26(12): 5889-5896. |
53 | CHEN H, WU Z, SU Z, et al. A mechanically robust self-healing binder for silicon anode in lithium ion batteries[J]. Nano Energy, 2021, 81: 105654. |
54 | LIU H, WU Q, GUAN X, et al. Ionically conductive self-healing polymer binders with poly(ether-thioureas) segments for high-performance silicon anodes in lithium-ion batteries[J]. ACS Appl Energy Mater, 2022, 5(4): 4934-4944. |
55 | SU T T, REN W F, WANG K, et al. Bifunctional hydrogen-bonding cross-linked polymeric binders for silicon anodes of lithium-ion batteries[J]. Electrochim Acta, 2022, 402: 139552. |
56 | LI J, ZHANG G, YANG Y, et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries[J]. J Power Sources, 2018, 406: 102-109. |
57 | ZHANG G, YANG Y, CHEN Y, et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small, 2018, 14(29): 1801189. |
58 | YANG J, ZHANG L, ZHANG T, et al. Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries[J]. Electrochem Commun, 2018, 87: 22-26. |
59 | NAM J, KIM E, K K R, et al. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries[J]. Sci Rep, 2020, 10(1): 14966. |
60 | LIU Z, FANG C, HE X, et al. In situ-formed novel elastic network binder for a silicon anode in lithium-ion batteries[J]. ACS Appl Mater Inter, 2021, 13(39): 46518-46525. |
61 | WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries[J]. Energy Storage Mater, 2021, 38: 121-129. |
62 | LIN S, WANG F, HONG R. Polyacrylic acid and beta-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries[J]. J Colloid Interface Sci, 2022, 613: 857-865. |
63 | RAJEEV K K, NAM J, JANG W, et al. Polysaccharide-based self-healing polymer binder via schiff base chemistry for high-performance silicon anodes in lithium-ion batteries[J]. Electrochim Acta, 2021, 384: 138364. |
64 | LIAO H, LIU N, HE W, et al. Three-dimensional cross-linked binder based on ionic bonding for a high-performance siox anode in lithium-ion batteries[J]. ACS Appl Energy Mater, 2022, 5(4): 4788-4795. |
65 | GENDENSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. J Power Sources, 2018, 384: 379-386. |
66 | HUANG H, CHEN R, YANG S, et al. High-performance Si flexible anode with rGO substrate and Ca2+ crosslinked sodium alginate binder for lithium ion battery[J]. Synthetic Metals, 2019, 247: 212-218. |
67 | JEONG Y K, CHOI J W. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes[J]. ACS Nano, 2019, 13(7): 8364-8373. |
68 | LI Y, JIN B, WANG K, et al. Coordinatively-intertwined dual anionic polysaccharides as binder with 3D network conducive for stable sei formation in advanced silicon-based anodes[J]. Chem Eng J, 2022, 429: 132235. |
69 | CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357(6348): 279-283. |
70 | KIM J, CHOI J, PARK K, et al. Host-guest interlocked complex binder for silicon-graphite composite electrodes in lithium ion batteries[J]. Adv Energy Mater, 2022, 12(11): 2103718. |
71 | CHUANG Y P, LIN Y L, WANG C C, et al. Dual cross-linked polymer networks derived from the hyperbranched poly(ethyleneimine) and poly(acrylic acid) as efficient binders for silicon anodes in lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(2): 1583-1592. |
72 | SHI Z, LIU Q, YANG Z, et al. A chemical switch enabled autonomous two-stage crosslinking polymeric binder for high performance silicon anodes[J]. J Mater Chem A, 2022, 10(3): 1380-1389. |
73 | HU L, ZHANG X, LI B, et al. Design of high-energy-dissipation, deformable binder for high-areal-capacity silicon anode in lithium-ion batteries[J]. Chem Eng J, 2021, 420: 129991. |
74 | GENDENSUREN B, HE C, OH E S. Preparation of pectin-based dual-crosslinked network as a binder for high performance Si/C anode for libs[J]. Korean J Chem Eng, 2020, 37(2): 366-373. |
75 | JIAO X, YIN J, XU X, et al. Highly energy‐dissipative, fast self‐healing binder for stable Si anode in lithium-ion batteries[J]. Adv Funct Mater, 2020, 31(3): 2005699. |
76 | SHI Y, PENG L, DING Y, et al. Nanostructured conductive polymers for advanced energy storage[J]. Chem Soc Rev, 2015, 44(19): 6684-6696. |
77 | PANIGRAHY S, KANDASUBRAMANIAN B. Polymeric thermoelectric pedot: pss & composites: synthesis, progress, and applications[J]. Eur Polym J, 2020, 132: 109726. |
78 | HIGGINS T M, PARK S H, KING P J, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3): 3702-3713. |
79 | WANG L, LIU T, PENG X, et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries[J]. Adv Funct Mater, 2018, 28(3): 1704858. |
80 | HU S, WANG L, HUANG T, et al. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries[J]. J Power Sources, 2020, 449: 227472. |
81 | TANG R, MA L, ZHANG Y, et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode[J]. ChemElectroChem, 2020, 7(9): 1992-2000. |
82 | LEE K, KIM T H. Poly(aniline-co-anthranilic acid) as an electrically conductive and mechanically stable binder for high-performance silicon anodes[J]. Electrochim Acta, 2018, 283: 260-268. |
83 | RAJEEV K K, KIM E, NAM J, et al. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance si anodes in Li-ion batteries[J]. Electrochim Acta, 2020, 333: 135532. |
84 | TONG J, HAN C, HAO X, et al. Conductive polyacrylic acid-polyaniline as a multifunctional binder for stable organic quinone electrodes of lithium-ion batteries[J]. ACS Appl Mater Inter, 2020, 12(35): 39630-39638. |
85 | GENDENSUREN B, SUGARTSEREN N, KIM M, et al. Incorporation of aniline tetramer into alginate-grafted-polyacrylamide as polymeric binder for high-capacity silicon/graphite anodes[J]. Chem Eng J, 2022, 433: 133553. |
86 | LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J]. Nano Energy, 2017, 36: 206-212. |
87 | BULUT E, GÜZEL E, YUCA N, et al. Novel approach with polyfluorene/polydisulfide copolymer binder for high-capacity silicon anode in lithium-ion batteries[J]. J Appl Poly Sci, 2019, 137(4): 48303. |
88 | YUCA N, CETINTASOGLU M E, DOGDU M F, et al. Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries[J]. Int J Energ Res, 2018, 42(3): 1148-1157. |
89 | SONG Z, ZHANG T, WANG L, et al. Bio-inspired binder design for a robust conductive network in silicon-based anodes[J]. Small Methods, 2022: e2101591. |
[1] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[2] | Yu-Chen TAO, Xiao-Hui HOU, Deng-Ke YIN, Ye YANG. Effect of Electric Field-Regulating Cholesterol-based Liquid Crystal Films on the Growth and Differentiation of Fibroblasts [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 546-553. |
[3] | Jin-Jian LIU, Yi-Wei LU. Multiple-Responsive Coordination Polymers Based on a Carboxybenzyl Viologen Ligand [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 397-403. |
[4] | Bo XIONG, Tai-Hua LI, Wu-Ping ZHOU, Chang-Yu LIU, Xiao-Long XU. Preparation of Cu2O/CuO-g-C3N4 Adsorbent by One-step Thermal Polymerization and Adsorption Properties for Methyl Orange [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 420-429. |
[5] | Jin-Jian LIU, Na LIU, Feng-Yi YANG. Synthesis and Photochromic Properties of Two Isostructural Viologen Coordination Polymers [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 245-251. |
[6] | Shi-Peng JIANG, Yu-Xi ZHOU, Pei-Ran MENG, Yan-Xuan XIE, Zhi-Yi SONG, Huan-Ying ZHAO, Yue SUN. Preparation and Properties of Ultramicro Imprinting Sensor for Human Serum Albumin via Metal-free Visible-light-induced Atom Transfer Radical Polymerization [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 299-308. |
[7] | Yu-Huang LI, Ze-Yi LU, Hong-Mei YUAN, Gang WANG, Cheng-Jiang ZHANG. Preparation and Application of Acylhydrazone Bonded Polymer Gel in Nitrofuran Drugs Analysis [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 100-108. |
[8] | En-Tong WANG, Lin-Fang YANG. Preparation and Properties of LiNi0.6Co0.2Mn0.2O2 Cathode Material for High Specific Capacity Lithium Ion Battery [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1209-1215. |
[9] | Guan-Yu XIE, Mao LI. Topological Metallopolymers Synthesized by Electropolymerization and Their Photoelectric Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1246-1251. |
[10] | Hong-Xia CHEN, Bao-Xia LI, Ying-Ming YAO, Peng LIU. Synthesis, Characterization and Catalytic Activity of Benzylamine⁃bridged Bis(phenolato)lanthanide Complexes [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 843-851. |
[11] | Yuan-Hao JIAO, Hong-Yan CUI, Liu-Wei ZHANG, Shuang ZENG, Hao WANG, Ming ZHANG, Jing-Yun WANG, Qi-Xian CHEN. Fabrication of Multifunctional Gene Delivery Systems Responsible to Intracellular Microenvironments Through in situ Polymerization [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1510-1522. |
[12] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[13] | Ying CHEN, Tian-Ding HU, Yun-Li LIU, Pu ZHANG, Yun-Fei ZHI, Shao-Yun SHAN. Research Progress on Chemical Resourse Utilization of Sulfur Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 223-234. |
[14] | HU Xiao-Hua, XIONG Shi-Sheng. Advanced Lithography: Directed Self-Assembly [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1029-1078. |
[15] | LI Xiao-Ou, GU Xue-Song, LIU Ya-Dong, JI Sheng-Xiang. Research Progress on Chemically Amplified 193 nm Photoresists [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1105-1118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||