Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (02): 223-234.DOI: 10.19894/j.issn.1000-0518.210078
• Review • Previous Articles Next Articles
Ying CHEN1, Tian-Ding HU1, Yun-Li LIU1, Pu ZHANG2, Yun-Fei ZHI1(), Shao-Yun SHAN1()
Received:
2021-02-22
Accepted:
2021-06-17
Published:
2022-02-10
Online:
2022-02-09
Contact:
Yun-Fei ZHI,Shao-Yun SHAN
Supported by:
CLC Number:
Ying CHEN, Tian-Ding HU, Yun-Li LIU, Pu ZHANG, Yun-Fei ZHI, Shao-Yun SHAN. Research Progress on Chemical Resourse Utilization of Sulfur Dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 223-234.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210078
[1] | WU H, CAI W, LONG M, et al. Sulfur dioxide capture by heterogeneous oxidation on hydroxylated manganese dioxide[J]. Environ Sci Technol, 2016, 50(11):5809-5816. |
[2] | LI X, YI H, WANG H. Sulphur dioxide and arsenic affect male reproduction via interfering with spermatogenesis in mice[J]. Ecotoxicol Environ Saf, 2018, 165:164-173. |
[3] | BRANDT-RAUF P, FALLON L, TARANTINI T, et al. Health hazards of fire fighters: exposure assessment[J]. Occup Environ Med, 1988, 45(9):606-612. |
[4] | WANG M, JIANG X. The recycling of sulfur dioxide[J]. Chin Sci Bull, 2018, 63(26):2707-2716. |
[5] | RUMAVOR M, D?AZ-SOMOANO M, LOPEZ-ANTON M, et al. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel, 2015, 148:98-103. |
[6] | HILL F, ZANK J. Flue gas desulphurization by spray dry absorption[J]. Chem Eng Process, 2000, 39(1):45-52. |
[7] | WANG F, ZHANG Y, MAO Z. High adsorption activated calcium silicate enabling high-capacity adsorption for sulfur dioxide[J]. New J Chem, 2020, 44(27):11879-11886. |
[8] | BALTRUSAITIS J, USHER C R, GRASSIAN V H. Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface[J]. Phys Chem Chem Phys, 2007, 9(23):3011-3024. |
[9] | YU X, HAO J, XI Z, et al. Investigation of low concentration SO2adsorption performance on different amine-modified merrifield resins[J]. Atmos Pollut Res, 2019, 10(2):404-411. |
[10] | SHAO J, ZHANG J, ZHANG X, et al. Enhance SO2adsorption performance of biochar modified by CO2activation and amine impregnation[J]. Fuel, 2018, 224:138-146. |
[11] | ALQAHTANI M S, WANG X, GRAY J L, et al. Plasma-assisted catalytic reduction of SO2to elemental sulfur: influence of nonthermal plasma and temperature on iron sulfide catalyst[J]. J Catal, 2020, 391:260-272. |
[12] | MOUSAVI S E, PAHLAVANZADEH H, KHANI M, et al. Selective catalytic reduction of SO2with methane for recovery of elemental sulfur over nickel-alumina catalysts[J]. React Kinet, Mech Catal, 2018, 124(2):669-682. |
[13] | LIU T, CLEGG S L, ABBATT J P. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles[J]. Proc Natl Acad Sci, India, 2020, 117(3):1354-1359. |
[14] | LIM J, PYUN J, CHAR K. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials[J]. Angew Chem Int Ed, 2015, 54(11):3249-3258. |
[15] | GRIEBEL J J, GLASS R S, CHAR K, et al. Polymerizations with elemental sulfur: a novel route to high sulfur content polymers for sustainability, energy and defense[J]. Prog Polym Sci, 2016, 58:90-125. |
[16] | CHEN C L, WANG C H, WENG H S. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur[J]. Chemosphere, 2004, 56(5):425-431. |
[17] | FENG T, ZHAO X, WANG T, et al. Reduction of SO2with CO to elemental sulfur in activated carbon bed[J]. Energy Fuels, 2016, 30(8):6578-6584. |
[18] | NGWENYA T, NONGWE I, JEWELL L L. Reduction of sulphur dioxide using carbon monoxide over gold supported catalysts[J]. Gold Bull, 2018, 51(4):153-162. |
[19] | WANG R, YAN J, ZHOU Z, et al. Regeneration of hydrogen storage alloy in spent nickel-metal hydride batteries[J]. J Alloys Compd, 2002, 336(1/2):237-241. |
[20] | MIMURA K, NANJO M. Production of pure tantalum by carbon-reduction smelting and hydrogen plasma-arc melting with refining[J]. Mater Trans, JIM, 1990, 31(4):293-301. |
[21] | COCHRAN C N. Recovery of hydrogen fluoride fumes on alumina in aluminum smelting[J]. Environ Sci Technol, 1974, 8(1):63-66. |
[22] | FENG T, HUO M, ZHAO X, et al. Reduction of SO2to elemental sulfur with H2and mixed H2/CO gas in an activated carbon bed[J]. Chem Eng Res Des, 2017, 121:191-199. |
[23] | CHEN X, KUO D H, WU Z Y, et al. Multi-component (Cu, Mn)(Se, S) nanosheet catalysts for redox reactions in the dark[J]. Sep Purif Technol, 2019, 211:71-80. |
[24] | CAI S, HU H, LI H, et al. Design of multi-shell Fe2O3@MnO x @CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2tolerance[J]. Nanoscale, 2016, 8(6):3588-3598. |
[25] | GE T, ZUO C, CHEN H, et al. Catalytic activity and molecular behavior of lanthanum modified CoS x /γ-Al2O3catalysts for the reduction of SO2to sulfur in smelter off-gas using CO-H2mixture as reductant[J]. Ind Eng Chem Res, 2019, 58(9):3595-3605. |
[26] | ZHAO T, LIANG J, ZHANG Y, et al. Unexpectedly efficient SO2capture and conversion to sulfur in novel imidazole-based deep eutectic solvents[J]. Chem Commun, 2018, 54(65):8964-8967. |
[27] | DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Appl Catal B, 1998, 19(2):103-117. |
[28] | ROBINSON B W, KUSAKABE M. Quantitative preparation of sulfur dioxide, for sulfur-34/sulfur-32 analyses, from sulfides by combustion with cuprous oxide[J]. Anal Chem, 1975, 47(7):1179-1181. |
[29] | TAKAHASHI K, KASAHARA M, ITOH M. A kinetic model of sulfuric acid aerosol formation from photochemical oxidation of sulfur dioxide vapor[J]. J Aerosol Sci, 1975, 6(1):45-55. |
[30] | GERHARD E R, JOHNSTONE H. Air pollution studies-photochemical oxidation of sulfur dioxide in air[J]. Ind Eng Chem, 1955, 47(5):972-976. |
[31] | PIERSON W R, HAMMERLE R H, BRACHACZEK W W. Sulfate formed by interaction of sulfur dioxide with filters and aerosol deposits[J]. Anal Chem, 1976, 48(12):1808-1811. |
[32] | COLLMAN J P, VALENTINE J S, VALENTINE J R D. Formation of chelated sulfate by reactions between sulfur dioxide and oxygen in the coordination sphere of iridium and ruthenium complexes[J]. Inorg Chem, 1971, 10(2):219-225. |
[33] | HORN R, WEISSBERGER E, COLLMAN J P. Oxygen-18 study of the reaction between iridium-and platinum-oxygen complexes and sulfur dioxide to form coordinated sulfate[J]. Inorg Chem, 1970, 9(10):2367-2371. |
[34] | KAICHEV V V, POPOVA G Y, CHESALOV Y A, et al. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2catalyst[J]. J Catal, 2014, 311:59-70. |
[35] | ELMI A S, TRONCONI E, CRISTIANI C, et al. Mechanism and active sites for methanol oxidation to methyl formate over coprecipitated vanadium-titanium oxide catalysts[J]. Ind Eng Chem Res, 1989, 28(4):387-393. |
[36] | LEE M D, CHEN W S, CHIANG H P. Ammoxidation of toluene to benzonitrile over vanadium-bismuth scheelite[J]. Appl Catal, A, 1993, 101(2):269-281. |
[37] | HABER J, WOJCIECHOWSKA M. Ammoxidation of toluene on MgF2-supported monolayer vanadium oxide catalysts[J]. Catal Lett, 1991, 10(3/4):271-278. |
[38] | QING M, SU S, WANG L, et al. Getting insight into the oxidation of SO2to SO3over V2O5-WO3/TiO2catalysts: reaction mechanism and effects of NO and NH3 [J]. Chem Eng J, 2019, 361:1215-1224. |
[39] | ASSEFI M, TORABI M, SAJADI A. Catalytic conversion of SO2released from the roasting process of copper sulfides to SO3by new nanocatalysts of vanadium (V) oxide[J]. J Chin Chem Soc 2017, 64(2):164-175. |
[40] | LI Y, XIONG J, LIN Y, et al. Distribution of SO2oxidation products in the SCR of NO over V2O5/TiO2catalysts at different temperatures[J]. Ind Eng Chem Res, 2020, 59(11):5177-5185. |
[41] | TAO L, WANG X, NING P, et al. Removing sulfur dioxide from smelting flue and increasing resource utilization of copper tailing through the liquid catalytic oxidation[J]. Fuel Process Technol, 2019, 192:36-44. |
[42] | TAO L, WANG X, WANG L, et al. Efficient removal of sulfur dioxide from flue gas through liquid catalytic oxidation using copper tailing as the in situ iron ion donator[J]. Energy Fuels, 2020, 34:3513-3521. |
[43] | DONG Y N, CHEN W C, ZHANG L L, et al. Green and efficient sulfur dioxide removal using hydrogen peroxide in rotating packed bed reactor: modeling and experimental study[J]. Chem Eng Sci, 2021:116467. |
[44] | LIU L, NI Y, ZHI Y, et al. Sustainable and biodegradable copolymers from SO2and renewable eugenol: a novel urea fertilizer coating material with superio slow release performance[J]. Macromolecules, 2020, 53(3):936-945. |
[45] | VOGEL P, TURKS M, BOUCHEZ L, et al. New organic chemistry of sulfur dioxide[J]. Acc Chem Res, 2007, 40(10):931-942. |
[46] | BOUCHEZ L, VOGEL P. One-pot, three-component synthesis of open-chain, polyfunctional sulfones[J]. Cheminform, 2002, 2002(2):7163-7165. |
[47] | LASERNA V, MARTIN E, ESCUDERO-AD?N E C, et al. Aluminum-catalyzed formation of functional 1, 3, 2-dioxathiolane 2-oxides from sulfur dioxide: an easy entry towards N-substituted aziridines[J]. Adv Synth Catal, 2016, 358(23):3832-3839. |
[48] | HERRMANN W A, ROESKY P W, SCHERER W, et al. Multiple bonds between main-group elements and transition metals, 140. cycloaddition reactions of methyltrioxorhenium (VII): diphenylketene and sulfur dioxide[J]. Organometallics, 1994, 13(11):4536-4542. |
[49] | CHRISTL M, BRUNN E, LANZENDOERFER F. Reactions of benzvalene with tetracyanoethylene, 2, 3-dichloro-5, 6-dicyano-p-benzoquinone, chlorosulfonyl isocyanate, and sulfur dioxide. evidence for concerted 1, 4-cycloadditions to a vinylcyclopropane system[J]. J Am Chem Soc, 1984, 106(2):373-382. |
[50] | KROLL J O, WOJCICKI A. Sulfur dioxide insertion: XIX. SO2insertion and cycloaddition reactions of some h5-C5H5W (CO)3R complexes[J]. J Organomet Chem, 1974, 66(1):95-101. |
[51] | ZHAO T, LI Y, ZHANG Y, et al. Efficient SO2capture and fixation to cyclic sulfites by dual ether-functionalized protic ionic liquids without any additives[J]. ACS Sustainable Chem Eng, 2018, 6(8):10886-10895. |
[52] | TAKENAKA Y, KIYOSU T, MORI G, et al. Synthesis of cyclic sulfites from epoxides and sulfur dioxide with silica-immobilized homogeneous catalysts[J]. ChemSusChem, 2012, 5(1):194-199. |
[53] | MEGIA-FERNANDEZ A, MORALES-SANFRUTOS J, HERNANDEZ-MATEO F, et al. Synthetic applications of cyclic sulfites, sulfates and sulfamidates in carbohydrate chemistry[J]. Curr Org Chem, 2011, 15(3):401-432. |
[54] | BREDIKHINA Z, SAVEL′EV D, BREDIKHIN A. Cyclic sulfites, key intermediates in synthesis of 1-alkylamino-3-aryloxy-2-propanols from glycidol[J]. Russ J Org Chem, 2002, 38(2):213-219. |
[55] | P?RVULESCU V I, HARDACRE C. Catalysis in ionic liquids[J]. Chem Rev, 2007, 107(6):2615-2665. |
[56] | MEHNERT C P. Supported ionic liquid catalysis[J]. Chem-Eur J, 2005, 11(1):50-56. |
[57] | WELTON T. Ionic liquids in catalysis[J]. Coord Chem Rev, 2004, 248(21/22/23/24):2459-2477. |
[58] | YANG Z Z, HE L N, SONG Q W, et al. Highly efficient SO2absorption/activation and subsequent utilization by polyethylene glycol-functionalized Lewis basic ionic liquids[J]. Phys Chem Chem Phys, 2012, 14(45):15832-15839. |
[59] | GARC?A-GRANADOS A, PARRA A, RIVAS F, et al. Seven-membered cyclic sulfite eudesmane derivatives: partial synthesis, structural determination, and enzymatic resolution[J]. J Org Chem, 2007, 72(2):643-646. |
[60] | GAO Y, SHARPLESS K B. Vicinal diol cyclic sulfates. like epoxides only more reactive[J]. J Am Chem Soc, 1988, 110(22):7538-7539. |
[61] | YE S, WU J. A palladium-catalyzed three-component coupling of arylboronic acids, sulfur dioxide and hydrazines[J]. Chem Commun, 2012, 48(62):7753-7755. |
[62] | KARAN C K, BHATTACHARJEE M A. Copper Metal-organic hydrogel as a catalyst for SO2and CO2fixation under ambient conditions[J]. Eur J Inorg Chem, 2019, 2019(31):3605-3611. |
[63] | ZHANG J, ZHOU K, WU J. Generation of sulfonated isobenzofuran-1(3H)-ones under photocatalysisthrough the insertion of sulfur dioxide[J]. Org Chem Front, 2018, 5(5):813-816. |
[64] | LIU T, LI Y, LAI L, et al. Photocatalytic reaction of potassium alkyltrifluoroborates and sulfur dioxide with alkenes[J]. Org Lett, 2018, 20(12):3605-3608. |
[65] | HE F S, CEN X, YANG S, et al. Intramolecular oxysulfonylation of alkenes with the insertion of sulfur dioxide under photocatalysis[J]. Org Chem Front, 2018, 5(16):2437-2441. |
[66] | GONG X, CHEN J, LAI L, et al. Benzylic C (sp 3)-H bond sulfonylation of 4-methylphenols with the insertion of sulfur dioxide under photocatalysis[J]. Chem Commun, 2018, 54(79):11172-11175. |
[67] | ZHOU K, LIU J B, XIE W, et al. Photoinduced synthesis of 2-sulfonylacetonitriles with the insertion of sulfur dioxide under ultraviolet irradiation[J]. Chem Commun, 2020, 56(17):2554-2557. |
[68] | WANG X, KUANG Y, YE S, et al. Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide[J]. Chem Commun, 2019, 55(99):14962-14964. |
[69] | CHOI W, SANDA F, ENDO T. Novel one-pot syntheses of sulfur-containing polymers from a bifunctional five-membered cyclic dithiocarbonate[J]. J Polym Sci, Part A: Polym Chem, 1998, 36(7):1189-1195. |
[70] | LUO M, ZHANG X H, DARENSBOURG D J. Poly (monothiocarbonate) s from the alternating and regioselective copolymerization of carbonyl sulfide with epoxides[J]. Acc Chem Res, 2016, 49(10):2209-2219. |
[71] | MATSUDA M, HARA Y. Radical copolymerization of sulfur dioxide and chloroprene[J]. J Polym Sci Pol Chem, 1972, 10(3):837-843. |
[72] | ALEXANDER R, DOYLE J. Polysulfones of norbornadiene[J]. J Polym Sci, Part B: Polym Lett, 1963, 1(11):625-627. |
[73] | TANAKA N, SATO E, MATSUMOTO A. Thermally stable polysulfones obtained by regiospecific radical copolymerization of various acyclic and cyclic 1, 3-diene monomers with sulfur dioxide and subsequent hydrogenation[J]. Macromolecules, 2011, 44(23):9125-9137. |
[74] | TANAKA N, SATO E, MATSUMOTO A. Highly-controlled regiospecific free-radical copolymerization of 1, 3-diene monomers with sulfur dioxide[J]. Org Biomol Chem, 2011, 9(10):3753-3758. |
[75] | KITAMURA T, TANAKA N, MIHASHI A, et al. Soluble and thermally stable polysulfones prepared by the regiospecific and alternating radical copolymerization of 2, 4-hexadiene with sulfur dioxide[J]. Macromolecules, 2010, 43(4):1800-1806. |
[76] | ALI S A, HALADU S A. Synthesis, solution properties and scale-inhibiting behaviour of a diallylammonium/sulfur dioxide cyclocopolymer bearing phospho-and sulfopropyl pendents[J]. Polym Int, 2014, 63(9):1682-1690. |
[77] | ZHI Y, DENG X, NI Y, et al. Cellulosic Cr (salen) complex as an efficient and recyclable catalyst for copolymerization of SO2with epoxide[J]. Carbohydr Polym, 2018, 194:170-176. |
[1] | Yi-Cheng ZHANG, Fei ZHA, Xiao-Hua TANG, Yue CHANG, Hai-Feng TIAN, Xiao-Jun GUO. Research Progress of Heterogeneous Catalytic Preparation of Organic Peroxides [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 769-788. |
[2] | Xing-Quan XIONG, Hui ZHANG, Li-Zhu GAO. Progress in Chemical Modification and Application of Lignin [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819. |
[3] | Yu-Wen YANG, Jing-Yao QI, Lin LI, Guo-Ning CHU, Sai WANG, Yu ZHANG, Shuang ZHANG. Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ru Supported on Magnetic NiFe2O4 [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 879-887. |
[4] | Feng ZHU, Xiao-Lian PENG, Wen-Bin ZHANG. Research Progress in the Effects of Proton Acceptor/Donor on Electrocatalytic Reactions [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 666-680. |
[5] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[6] | Fan WU, He-Yuan TIAN, Peng LIU, Li-Wei SUN, Yi-Bo ZHANG, Xiang-Guang YANG. Spinel Mangane-Based Catalysts with High Oxygen Vacancy Used for NH3-SCR Reaction at Low Temperature [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 697-707. |
[7] | Zhen-Bang LIU, Shuo ZHANG, Yu BAO, Ying-Ming MA, Wei-Qi LIANG, Wei WANG, Ying HE, Li NIU. Progress of Application Research on Cheminformatics in Deep Learning [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 360-373. |
[8] | Bo XIONG, Tai-Hua LI, Wu-Ping ZHOU, Chang-Yu LIU, Xiao-Long XU. Preparation of Cu2O/CuO-g-C3N4 Adsorbent by One-step Thermal Polymerization and Adsorption Properties for Methyl Orange [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 420-429. |
[9] | Hua-Yu WANG, Chao ZHANG, Ke-Ming CHEN, Ming GE. Research Progress of Metal-organic Framework MIL-88A(Fe) and Its Composites in Water Treatment [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 155-168. |
[10] | Shi-Peng JIANG, Yu-Xi ZHOU, Pei-Ran MENG, Yan-Xuan XIE, Zhi-Yi SONG, Huan-Ying ZHAO, Yue SUN. Preparation and Properties of Ultramicro Imprinting Sensor for Human Serum Albumin via Metal-free Visible-light-induced Atom Transfer Radical Polymerization [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 299-308. |
[11] | Jun-Jie ZHANG, Yun-Jiao SHEN, Li-Ying MA, Peng-Hui WANG, Lei WANG, Yu-Lin DAI, Lei ZHAO. Study on Extract Composition of American Ginseng Flower in Oxidative-Induced H9c2 Cardromyocytes by LC-MS [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 126-133. |
[12] | Yan-Qin CHENG, Zhuo-Xi LI, You-Di WANG, Juan-Juan XU, Zheng BIAN. Structurally Simplified 4-Hydroxyprolinamide for Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroolefins [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 146-154. |
[13] | Hong-Mei BI. Research Progress of Assembly of Phospholipid Tube in Vitro and Its Potential Application in the Field of Biology and Chemistry [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 40-51. |
[14] | Dan ZHANG, Run-Mei SHANG, Zhen-Tao ZHAO, Jun-Hua LI, Jin-Juan XING. Selective Oxidation of Methanol to Dimethoxymethane over V/Ce⁃Al2O3 Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1429-1436. |
[15] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||