Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (4): 496-511.DOI: 10.19894/j.issn.1000-0518.230364
• Review • Previous Articles
Rui-Yao WU1,2, Dan-Dan OUYANG2, Li-Li AI1, An-Jie LIU1, Hui ZHU2, Xiao-Xin GAO3(), Jiao YIN2()
Received:
2023-11-20
Accepted:
2024-02-17
Published:
2024-04-01
Online:
2024-04-28
Contact:
Xiao-Xin GAO,Jiao YIN
About author:
yinjiao@ms.xjb.ac.cnSupported by:
CLC Number:
Rui-Yao WU, Dan-Dan OUYANG, Li-Li AI, An-Jie LIU, Hui ZHU, Xiao-Xin GAO, Jiao YIN. Research Progress of Biomass-Based Hard Carbon Anodes for Sodium-Ion Storage[J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 496-511.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230364
Fig.1 (a) Schematic representation of the local architectures, (b) typical voltage-charge profiles at second cycle in sodium half-cell of graphene, hard carbon, soft carbon and graphite[22]
Fig.4 (a) Digital pictures of a dried leaf before and after carbonization; (b) SEM image of the cross-section of the carbonized leaf; (c) Magnified SEM image of the carbon nanosheet in the sponge layer[41]; Digital images of (d) a wood block and (e) wood slabs cut through two directions; Top-viewed SEM images of (f) parallel cutting wood slabs and (g) vertical cutting wood slabs[42]
Fig.6 (a) XRD patterns of RHHC-1100, RHHC-1300 and RHHC-1500; (b) Raman spectra; (c-e) HRTEM images and SAED image[45]; (f) Schematic illustration of the sodium storage mechanism for LS carbon[64]
Fig.7 (a-c) FESEM images, (d) particle size distribution of MCMS-K[71]; (e) The XRD patterns of HCTs under different temperatures, (f) SEM image of 1600HCTs[72]; SEM images of (g) SiO2@LCU precursor and (h) ENMC; (i) TEM image of ENMC[76]
Fig.8 (a) SEM image and the corresponding Energy Dispersive Spectrometer (EDS) elemental mapping images of CCNs-600; (b) XPS map of CCN; (c, d) The corresponding N1s and O1s spectra for CCNs-600[82]
Precursor | Synthetic method | Carbonization temperature/℃ | Capacity/(mA·h·g-1) | ICE/% | Rate capability | Cycle number | Cyclability/(mA·h·g-1) | Ref. |
---|---|---|---|---|---|---|---|---|
Platanus flosses | One-step carbonization | 1 300 | 324.6(0.02 A/g) | 80 | 244/0.2 A/g | 100 | 258(79.6%) | [ |
Cherry petals | One-step carbonization | 1 000 | 310.1(0.02 A/g) | 67.3 | 25/1 A/g | 500 | 131.5(89.8%) | [ |
Oak leaves | One-step carbonization | 1 000 | 360(0.02 A/g) | 74.8 | 270/0.04 A/g | 200 | 243(90%) | [ |
Bamboo | Acid pre-treatment and two-step carbonization | 1 300 | 348.5(0.03 A/g) | 84.1 | 333/0.05 A/g | 500 | 300(91.6%) | [ |
Walnut shell | One-step carbonization | 1 000 | 257(0.05 A/g) | 71 | 48/2 A/g | 300 | 170(70.8%) | [ |
Rice husk | Acid pre-treatment | 1 300 | 372(0.025 A/g) | 66 | 265/0.5 A/g | 100 | 346(93%) | [ |
Pomelo peels | H3PO4 activation and one-step carbonization | 700 | 314.5(0.05 A/g) | 27 | 71/5 A/g | 220 | 181(99.3%) | [ |
Navel orange peel | Hydrothermal treatment and one-step carbonization | 1 300 | 337(0.1 A/g) | 63 | 328/0.1 A/g | 500 | 234(98.7%) | [ |
Hazelnut shells | Simple water washing | 1 100 | 275(0.02 A/g) | 79.4 | 233/0.03 A/g | 250 | 244(88.83%) | [ |
Wine corks | Acid pre-treatment and two-step carbonization | 1 600 | 358(0.03 A/g) | 81 | —— | 200 | 312(87%) | [ |
Lotus stems | One-step carbonization | 1 400 | 351(0.1 A/g) | 70 | 150/0.5 A/g | 450 | 330(94.2%) | [ |
Kapok fibers | Hydrothermal treatment and activation | 1 600 | 299.7(0.1 A/g) | 90 | 358/0.5 A/g | 100 | 267.9(89.4%) | [ |
Chitin powder | Acid pre-treatment and synthetic method | 600 | 360(0.05 A/g) | 47 | 320/0.05 A/g | 10 000 | —— | [ |
Durian shell | KOH activation and | 600 | 247.9(0.05 A/g) | 56.02 | 345/1 A/g | 200 | —— | [ |
Microcrystallinecellulos | Ice-assisted ball milling method | 1000 | 122.3(1 A/g) | 39.5 | —— | 2 000 | 80(65.4%) | [ |
Tissue | Two-step carbonization | 1 300 | 338(0.02 A/g) | 91.2 | 170/2 A/g | 1 000 | 286.5(93%) | [ |
Table 1 Summary of electrochemical performances of typical biomass-derived hard carbon materials
Precursor | Synthetic method | Carbonization temperature/℃ | Capacity/(mA·h·g-1) | ICE/% | Rate capability | Cycle number | Cyclability/(mA·h·g-1) | Ref. |
---|---|---|---|---|---|---|---|---|
Platanus flosses | One-step carbonization | 1 300 | 324.6(0.02 A/g) | 80 | 244/0.2 A/g | 100 | 258(79.6%) | [ |
Cherry petals | One-step carbonization | 1 000 | 310.1(0.02 A/g) | 67.3 | 25/1 A/g | 500 | 131.5(89.8%) | [ |
Oak leaves | One-step carbonization | 1 000 | 360(0.02 A/g) | 74.8 | 270/0.04 A/g | 200 | 243(90%) | [ |
Bamboo | Acid pre-treatment and two-step carbonization | 1 300 | 348.5(0.03 A/g) | 84.1 | 333/0.05 A/g | 500 | 300(91.6%) | [ |
Walnut shell | One-step carbonization | 1 000 | 257(0.05 A/g) | 71 | 48/2 A/g | 300 | 170(70.8%) | [ |
Rice husk | Acid pre-treatment | 1 300 | 372(0.025 A/g) | 66 | 265/0.5 A/g | 100 | 346(93%) | [ |
Pomelo peels | H3PO4 activation and one-step carbonization | 700 | 314.5(0.05 A/g) | 27 | 71/5 A/g | 220 | 181(99.3%) | [ |
Navel orange peel | Hydrothermal treatment and one-step carbonization | 1 300 | 337(0.1 A/g) | 63 | 328/0.1 A/g | 500 | 234(98.7%) | [ |
Hazelnut shells | Simple water washing | 1 100 | 275(0.02 A/g) | 79.4 | 233/0.03 A/g | 250 | 244(88.83%) | [ |
Wine corks | Acid pre-treatment and two-step carbonization | 1 600 | 358(0.03 A/g) | 81 | —— | 200 | 312(87%) | [ |
Lotus stems | One-step carbonization | 1 400 | 351(0.1 A/g) | 70 | 150/0.5 A/g | 450 | 330(94.2%) | [ |
Kapok fibers | Hydrothermal treatment and activation | 1 600 | 299.7(0.1 A/g) | 90 | 358/0.5 A/g | 100 | 267.9(89.4%) | [ |
Chitin powder | Acid pre-treatment and synthetic method | 600 | 360(0.05 A/g) | 47 | 320/0.05 A/g | 10 000 | —— | [ |
Durian shell | KOH activation and | 600 | 247.9(0.05 A/g) | 56.02 | 345/1 A/g | 200 | —— | [ |
Microcrystallinecellulos | Ice-assisted ball milling method | 1000 | 122.3(1 A/g) | 39.5 | —— | 2 000 | 80(65.4%) | [ |
Tissue | Two-step carbonization | 1 300 | 338(0.02 A/g) | 91.2 | 170/2 A/g | 1 000 | 286.5(93%) | [ |
1 | ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chem Rev, 2022, 122(22): 16610-16751. |
2 | GUO S, CHEN Y M, TONG L P, et al. Biomass hard carbon of high initial coulombic efficiency for sodium-ion batteries: preparation and application[J]. Electrochim Acta, 2022, 410: 140017. |
3 | SUN Y K. A rising tide of Co-free chemistries for Li-ion batteries[J]. ACS Energy Lett, 2022, 7(5): 1774-1775. |
4 | LI Q, ZHANG J, ZHONG L X, et al. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes[J]. Adv Energy Mater, 2022, 12(37): 2201734. |
5 | GONG C, PU S D, ZHANG S M, et al. The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes[J]. Energy Environ Sci, 2023, 16(2): 535-545. |
6 | ZHANG W, PENG J, HUA W, et al. Architecting amorphous vanadium oxide/mxene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries[J]. Adv Energy Mater, 2021, 11(22): 2100757. |
7 | ZHANG W C, LIU Y J, GUO Z P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering[J]. Sci Adv, 2019, 5(5): 7412. |
8 | ZHANG T F, LI C, WANG F, et al. Recent advances in carbon anodes for sodium-ion batteries[J]. Chem Record, 2022, 22(10): 202200083. |
9 | USISKIN R, LU Y X, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nat Rev Mater, 2021, 6(11): 1020-1035. |
10 | RATH P C, PATRA J, HUANG H T, et al. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries[J]. ChemSusChem, 2019, 12(10): 2302-2309. |
11 | ASFAW H D, GOND R, KOTRONIA A, et al. Bio-derived hard carbon nanosheets with high rate sodium-ion storage characteristics[J]. Sustainable Mater Technol, 2022, 32: e00407. |
12 | MURUGANANTHAM R, WANG F M, YUWONO R A, et al. Biomass feedstock of waste mango-peel-derived porous hard carbon for sustainable high-performance lithium-ion energy storage devices[J]. Energy Fuels, 2021, 35(13): 10878-10889. |
13 | LU M W, HUANG Y, CHEN C. Cedarwood bark-derived hard carbon as an anode for high-performance sodium-ion batteries[J]. Energy Fuels, 2020, 34(9): 11489-11497. |
14 | YIN J, ZHANG W L, ALHEBSHI N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods, 2020, 4(3): 1900853. |
15 | SHEN X J, ZHANG C F, HAN B X, et al. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future[J]. Chem Soc Rev, 2022, 51(5): 1608-1628. |
16 | DENG W T, CAO Y J, YUAN G M, et al. Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode[J]. ACS Appl Mater Interfaces, 2021, 13(40): 47728-47739. |
17 | ZHANG W L, YIN J, WANG C W, et al. Lignin derived porous carbons: synthesis methods and supercapacitor applications[J]. Small Methods, 2021, 5(11): 2100896. |
18 | YANG L P, WANG P Y, ZHANG S W, et al. Flexible and additive-free organic electrodes for aqueous sodium ion batteries[J]. J Mater Chem A, 2020, 8(43): 22791-22801. |
19 | WANG Z H, FENG X, BAI Y, et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries[J]. Adv Energy Mater, 2021, 11(11): 2003854. |
20 | BEDA A, RABUEL F, MORCRETTE M, et al. Hard carbon key properties allow for the achievement of high coulombic efficiency and high volumetric capacity in Na-ion batteries[J]. J Mater Chem A, 2021, 9(3): 1743-1758. |
21 | XIA J L, YAN D, GUO L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Adv Mater, 2020, 32(21): 2000447. |
22 | SAUREL D, ORAYECH B, XIAO B W, et al. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Adv Energy Mater, 2018, 8(17): 1703268. |
23 | XU Z, WANG J, GUO Z Y, et al. The role of hydrothermal carbonization in sustainable sodium-ion battery anodes[J]. Adv Energy Mater, 2022, 12(18): 2200208. |
24 | GUO Z Y, XU Z, XIE F, et al. Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries[J]. Adv Mater, 2023, 35: 2304091. |
25 | SUN N, QIU J S, XU B. Understanding of sodium storage mechanism in hard carbons: ongoing development under debate[J]. Adv Energy Mater, 2022, 12(27): 2200715. |
26 | STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. J Electrochem Soc, 2000, 147(4): 1271-1273. |
27 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Adv Funct Mater, 2011, 21(20): 3859-3867. |
28 | CAO Y L, XIAO L F, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett, 2012, 12(7): 3783-3787. |
29 | QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv Energy Mater, 2017, 7(17): 1700403. |
30 | BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Lett, 2015, 15(9): 5888-5892. |
31 | ZHANG B A, GHIMBEU C M, LABERTY C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Adv Energy Mater, 2016, 6(1): 1501588. |
32 | LI Y M, HU Y S, TITIRICI M M, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Adv Energy Mater, 2016, 6(18): 1600659. |
33 | CHEN X Y, TIAN J Y, LI P, et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism[J]. Adv Energy Mater, 2022, 12(24): 2200886. |
34 | HOU Z D, LEI D, JIANG M W, et al. Biomass-derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage[J]. ACS Appl Mater Interfaces, 2023, 15(1): 1367-1375. |
35 | ZHU Z Y, LIANG F, ZHOU Z R, et al. Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries[J]. J Mater Chem A, 2018, 6(4): 1513-1522. |
36 | BALAT M, BALAT M, KIRTAY E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. part 1: pyrolysis systems[J]. Energy Convers Managet, 2009, 50(12): 3147-3157. |
37 | 高利柱, 熊兴泉, 张辉. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819. |
GAO L Z, XIONG X Q, ZHANG H. Progress in chemical modification and application of lignin[J]. Chin J Appl Chem, 2023, 40(6): 806-819. | |
38 | TANG Z, ZHANG R, WANG H, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nat Commun, 2023, 14(1): 6024. |
39 | DEMIRBAS A. Combustion systems for biomass fuel[J]. Energy Sources Part A-Recovery Utili Environ Eff, 2007, 29(4): 303-312. |
40 | HUANG J L, ZHAO B T, LIU T, et al. Wood-derived materials for advanced electrochemical energy storage devices[J]. Adv Funct Maters, 2019, 29(31): 1902255. |
41 | LI H B, SHEN F, LUO W, et al. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery[J]. ACS Appl Mater Interfaces, 2016, 8(3): 2204-2210. |
42 | SHEN F, LUO W, DAI J Q, et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries[J]. Adv Energy Mater, 2016, 6(14): 1600377. |
43 | XU T Y, QIU X, ZHANG X, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance[J]. Chem Eng J, 2023, 452: 139514. |
44 | WAHID M, GAWLI Y, PUTHUSSERI D, et al. Nutty carbon: morphology replicating hard carbon from walnut shell for Na ion battery anode[J]. ACS Omega, 2017, 2(7): 3601-3609. |
45 | WANG Q Q, ZHU X S, LIU Y H, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666. |
46 | HONG K L, QIE L, ZENG R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. J Mater Chem A, 2014, 2(32): 12733-12738. |
47 | GAO Y, PIAO S, JIANG C, et al. Navel orange peel-derived hard carbons as high performance anode materials of Na and Li-ion batteries[J]. Diamond Relat Mater, 2022, 129: 109329. |
48 | 邓筠飞, 杜卫民, 王梦瑶, 等. 基于玉米秸秆合成的多孔生物质炭材料及其电化学储能[J]. 应用化学, 2019, 36(11): 1323-1332. |
DENG J F, DU W M, WANG M Y, et al. Synthesis and the electrochemical energy storage of porous biomass carbon from corn stalk[J]. Chin J Appl Chem, 2019, 36(11): 1323-1332. | |
49 | POZIO A, AURORA A, PROSINI P P. Hard carbon for sodium batteries: wood precursors and activation with first group hydroxide[J]. J Power Sources, 2020, 449: 227555. |
50 | LV W M, WEN F S, XIANG J Y, et al. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries[J]. Electrochim Acta, 2015, 176: 533-541. |
51 | MOON H, INNOCENTI A, LIU H T, et al. Bio-waste-derived hard carbon anodes through a sustainable and cost-effective synthesis process for sodium-ion batteries[J]. ChemSusChem, 2022, 16: e2201713. |
52 | KANG X N, ZHU H, WANG C Y, et al. Biomass derived hierarchically porous and heteroatom-doped carbons for supercapacitors[J]. J Colloid Interface Sci, 2018, 509: 369-383. |
53 | SHAJI N, NANTHAGOPAL M, KIM T, et al. Efficient conversion of non-biodegradable waste into hard carbon as a cost-effective anode for sodium-ion batteries[J]. Chem Eng Sci, 2023, 279: 118938. |
54 | FU H, XU Z W, LI R Z, et al. Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage[J]. ACS Sustainable Chem Eng, 2018, 6(11): 14751-14758. |
55 | LI Y, LU Y, MENG Q, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Adv Energy Mater, 2019, 9(48): 1902852. |
56 | ARIE A A, TEKIN B, DEMIR E, et al. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery[J]. Mater Technol, 2019, 34(9): 515-524. |
57 | ALVIRA D, ANTORAN D, MANYA J J. Plant-derived hard carbon as anode for sodium-ion batteries: a comprehensive review to guide interdisciplinary research[J]. Chem Eng J, 2022, 447: 137468. |
58 | TIAN Z, ZOU Y, LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Adv Sci, 2022, 9(22): 2201207. |
59 | WANG Y, CAO Z, WAHYUDI W, et al. Electrolyte-mediated misconception of carbon-based electrode performance and beyond in metal-ion batteries[J]. Adv Energy Mater, 2023, 13(29): 2301354. |
60 | KATSUYAMA Y, NAKAYASU Y, KOBAYASHI H, et al. Rational route for increasing intercalation capacity of hard carbons as sodium-ion battery anodes[J]. ChemSusChem, 2020, 13(21): 5762-5768. |
61 | XIAO L F, LU H Y, FANG Y J, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Adv Energy Mater, 2018, 8(20): 1703238. |
62 | MENG J Q, JIA G F, YANG H J, et al. Recent advances for sei of hard carbon anode in sodium-ion batteries: a mini review[J]. Front Chem, 2022, 10: 986541. |
63 | ALVIN S, YOON D, CHANDRA C, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon, 2019, 145: 67-81. |
64 | ZHANG N, LIU Q, CHEN W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. J Power Sources, 2018, 378: 331-337. |
65 | 殷娇, 朱慧, 陈建国, 等. 一种集棉花秸秆或果木炭化活化为一体的处理装置: 中国, 202021012679.3[P]. 2021-02-05. |
YIN J, ZHU H, CHEN J G, et al. The utility model relates to a processing device integrating carbonization and activation of cotton straw or fruit wood: CN, 202021012679.3[P]. 2021-02-05. | |
66 | CORREA C R, KRUSE A. Biobased functional carbon materials: production, characterization, and applications-a review[J]. Materials, 2018, 11(9): 1568. |
67 | CHEN R F, LI L Q, LIU Z, et al. Preparation and characterization of activated carbons from tobacco stem by chemical activation[J]. J Air Waste Manage Assoc, 2017, 67(6): 713-724. |
68 | LU M J, YU W H, SHI J, et al. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium-and sodium-ion batteries[J]. Electrochim Acta, 2017, 251: 396-406. |
69 | ZHU J H, ROSCOW J, CHANDRASEKARAN S, et al. Biomass-derived carbons for sodium-ion batteries and sodium-ion capacitors[J]. ChemSusChem, 2020, 13(6): 1275-1295. |
70 | LI Q, CAO Z, CHENG H, et al. Electrolyte boosting microdumbbell-structured alloy/metal oxide anode for fast-charging sodium-ion batteries[J]. ACS Mater Lett, 2022, 4(12): 2469-2479. |
71 | ZHANG J Y, CHEN Z Y, WANG G Y, et al. Eco-friendly and scalable synthesis of micro-/mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries[J]. Appl Surf Sci, 2020, 533: 147511. |
72 | SONG P, WEI S Q, DI J, et al. Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries[J]. Nano Res, 2023, 16(4): 4874-4879. |
73 | LI J Y, QI H, WANG Q G, et al. Constructing graphene-like nanosheets on porous carbon framework for promoted rate performance of Li-ion and Na-ion storage[J]. Electrochim Acta, 2018, 271: 92-102. |
74 | SUN K, LI H, YE H, et al. 3D-structured polyoxometalate microcrystals with enhanced rate capability and cycle stability for lithium-ion storage[J]. ACS Appl Mater Interfaces, 2018, 10(22): 18657-18664. |
75 | LIU Z C, YUAN X H, ZHANG S S, et al. Three-dimensional ordered porous electrode materials for electrochemical energy storage[J]. NPG Asia Mater, 2019, 11: 12. |
76 | HUANG S, YANG D J, QIU X Q, et al. Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering[J]. Adv Funct Mater, 2022, 32(33): 2203279. |
77 | ZHU J W, MU S C. Defect engineering in the carbon-based electrocatalysts: insight into the intrinsic carbon defects[J]. Adv Funct Mater, 2020, 30(25): 2001097. |
78 | OUYANG D D, YANG L Q, WANG Y N, et al. Amorphous carbon with N—S bond active center for enhanced capacitive contribution of potassium-ion batteries[J]. Sustainable Mater Technol, 2023, 37: e00672. |
79 | DE TOMAS C, ALABIDUN S, CHATER L, et al. Doping carbon electrodes with sulfur achieves reversible sodium ion storage[J]. J Phys Energy, 2023, 5(2): 024006. |
80 | LI Z F, BOMMIER C, SEN CHONG Z, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Adv Energy Mater, 2017, 7(18): 1602894. |
81 | YANG L Q, WANG Y A, LIU J K, et al. Tailoring b, n-enriched carbon nanosheets via a gelation-assisted strategy for high-capacity and fast-response capacitive desalination[J]. ACS Appl Mater Interfaces, 2023, 15(34): 40529-40537. |
82 | GAO L F, MA J Q, LI S P, et al. 2D ultrathin carbon nanosheets with rich N/O content constructed by stripping bulk chitin for high-performance sodium ion batteries[J]. Nanoscale, 2019, 11(26): 12626-12636. |
83 | ZHU Y D, HUANG Y, CHEN C, et al. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage[J]. Electrochim Acta, 2019, 321: 134698. |
84 | ZHAO G G, ZOU G Q, HOU H S, et al. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior[J]. J Mater Chem A, 2017, 5(46): 24353-24360. |
85 | WANG C Y, OUYANG D D, SUN K, et al. Facile preparation of nitrogen-doped carbon nanosheets from CO2 for potassium-ion storage[J]. Mater Chem Front, 2022, 6(17): 2535-2544. |
86 | WANG H, SUN F, QU Z B, et al. Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage[J]. ACS Sustainable Chem Eng, 2019, 7(22): 18554-18565. |
87 | HOU B H, WANG Y Y, NING Q L, et al. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism[J]. Adv Mater, 2019, 31(40): 1903125. |
[1] | Yuan-Jie LI, Bing-Bing FAN, Jun-Li ZHANG, Yan-Mei ZHOU. Research Progress in the Application of Amino Acid Ionic Liquids to Energy Storage and Biomass Resource Utilization [J]. Chinese Journal of Applied Chemistry, 2024, 41(3): 391-404. |
[2] | Fang-Zheng HU, Xing GAO, Lei LIU, Tian-Heng YUAN, Ning CAO, Kai LI, Ya-Tao WANG, Jian-Hua LI, Hui-Qin LIAN, Xiao-Dong WANG, Xiu-Guo CUI. Advances in Black Phosphorus Anode Advantages and Optimization in Li-ion Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 571-582. |
[3] | Wen-Jun SHI, Zhong-Hui SUN, Zhong-Qian SONG, XU-Jia NAN, Dong-Xue HAN, Li NIU. Research Progress of Layered Transition Metal Oxides Cathode Materials for Sodium-ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 583-596. |
[4] | Xue-Jian SHI, Wan-Qiang LIU, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Sb-based Anode Materials for Potassium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 210-228. |
[5] | Fu-Yang WANG, Wei-Ming SONG, Li SUN, Jian FENG, Jun YE, Zhi-Qi YANG. Controllable Construction of Porous Nanocube FeSe2/Graphene Composite for Efficient Na⁃Ion Storage [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 779-786. |
[6] | WANG Jinying, QU Jiangying, LI Jielan, TANG Zhanlei, ZANG Yunhao, WANG Tao, GU Jianfeng, ZHOU Gang, GAO Feng. Two-Step Coating Synthesis of Silicon/Carbon Composite Based on Coal Tar Pitch and Its Lithium Battery Performance [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 562-569. |
[7] | HAO Wenwen, ZHAO Dan, LI Yanchun, CHU Wenling, LÜ Chengwei, SHI Lei. One-Pot Efficient Synthesis of 3-Methylindole from Biomass-Derived Glycerol with Aniline by Highly Dispersible Nanosilver Catalyst [J]. Chinese Journal of Applied Chemistry, 2019, 36(4): 465-473. |
[8] | DENG Junfei,DU Weimin,WANG Mengyao,WEI Qinghe. Synthesis and the Electrochemical Energy Storage of Porous Biomass Carbon from Corn Stalk [J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 1323-1332. |
[9] | ZUO Zicheng,LI Yuliang. Applications of Graphdiyne in Li+/Na+ Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1057-1066. |
[10] | WANG Huanhuan,LU Songtao,QIN Wei,WU Xiaohong. Preparation and Electrochemical Performance of MoS2@Co9S8 Yolk-Shell Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 956-962. |
[11] | Zhaomin WANG, Zheng YI, Ming ZHONG, Yong CHENG, Limin WANG. Research Progress of Antimony-Based Anode Materials for Lithium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(7): 745-755. |
[12] | LI Bao,LIU Xiaoyang,LI Fan,Esmail Husein M. Salhabib,ZHAO Jilu,WANG Bao. Preparation and Performances of Nano-Micro Structural Ferric Oxide from Flower-Like Iron Alkoxides [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 356-365. |
[13] | CHEN Guanghai, BAI Ying, WU Feng, WU Chuan. Two-Dimensional Layered Dicalcium Nitride as Anode Material for Sodium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 366-368. |
[14] | CHEN Guanghai, BAI Ying, WU Feng, WU Chuan. Two-Dimensional Layered Dicalcium Nitride as Anode Material for Sodium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 0-0. |
[15] | TAN Jiang, TAN Xi, KANG Wenbin, ZHANG Chuhong. Two Dimensional Molybdenum Disulfide/Graphite Composites Prepared by Direct All-Solid-State Ball-Milling for Lithium-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2017, 34(7): 810-817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||