Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (4): 484-495.DOI: 10.19894/j.issn.1000-0518.230373
• Review • Previous Articles
Yi ZHANG, Yu-Tong CHEN, Jing-Yu SHI, Ke-Ke HUANG()
Received:
2023-11-28
Accepted:
2024-02-11
Published:
2024-04-01
Online:
2024-04-28
Contact:
Ke-Ke HUANG
About author:
kkhuang@jlu.edu.cnSupported by:
CLC Number:
Yi ZHANG, Yu-Tong CHEN, Jing-Yu SHI, Ke-Ke HUANG. Research Progress of Optimizing Conductivity of Garnet-Type Solid Electrolyte Li7La3Zr2O12[J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 484-495.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230373
Fig.1 The structure of (a) cubic and (b) tetragonal Li7La3Zr2O12[33]; The loop structures constructed by Li atomic arrangement in (c) cubic and (d) tetragonal phase[31]
Fig.3 (a) Nyquist plots of Li6.4A0.2La3Zr2O12 (A=Al, Fe, Ga)[42]; (b) Summary of dopant ion radius and ion conductivity of Zr site in LLZO[61]; (c) Schematic illustration of Li nucleation and propagation mechanisms in high-density and low-density LLZO[62]
1 | LIU Y, TAO X, WANG Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries[J]. Science, 2022, 375(6582): 739-745. |
2 | YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77-83. |
3 | KWAK W J, ROS Y, SHARON D, et al. Lithium-oxygen batteries and related systems: potential, status, and future[J]. Chem Rev, 2020, 120(14): 6626-6683. |
4 | CHENG X B, LIU H, YUAN H, et al. A perspective on sustainable energy materials for lithium batteries[J]. Sus Mat, 2021, 1(1): 38-50. |
5 | LI Y, SONG S, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53. |
6 | KALNAUS S, DUDNEY N J, WESTOVER A S, et al. Solid-state batteries: the critical role of mechanics[J]. Science, 2023, 381(6664): eabg5998. |
7 | MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 1-16. |
8 | ABOUALI S, YIM C H, MERATI A, et al. Garnet-based solid-state Li batteries: from materials design to battery architecture[J]. ACS Energy Lett, 2021, 6(5): 1920-1941. |
9 | YANG X, ADAIR K R, GAO X, et al. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries[J]. Energy Environ Sci, 2021, 14(2): 643-671. |
10 | MISHRA A K, CHALIYAWALA H A, PATEL R, et al. Inorganic solid state electrolytes: insights on current and future scope[J]. J Electrochem Soc, 2021, 168(8): 080536. |
11 | HE F, HU Z, TANG W, et al. Vertically heterostructured solid electrolytes for lithium metal batteries[J]. Adv Funct Mater, 2022, 32(25): 2201465. |
12 | BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chem Rev, 2016, 116(1): 140-162. |
13 | WANG C, KIM J T, WANG C, et al. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells[J]. Adv Mater, 2023, 35(19): 2209074. |
14 | WU Y, WANG S, LI H, et al. Progress in thermal stability of all-solid-state-Li-ion-batteries[J]. InfoMat, 2021, 3(8): 827-853. |
15 | WU J, LIU S, HAN F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv Mater, 2021, 33(6): 2000751. |
16 | KIM K J, BALAISH M, WADAGUCHI M, et al. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Adv Energy Mater, 2021, 11(1): 2002689. |
17 | WANG C, LIANG J, KIM J T, et al. Prospects of halide-based all-solid-state batteries: from material design to practical application[J]. Sci Adv, 2022, 8(36): eadc9516. |
18 | ABOUALI S, YIM C H, MERATI A, et al. Garnet-based solid-state Li batteries: from materials design to battery architecture[J]. ACS Energy Lett, 2021, 6(5): 1920-1941. |
19 | WU J F, PANG W K, PETERSON V K, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries[J]. ACS Appl Mater Interfaces, 2017, 9(14): 12461-12468. |
20 | LU J, LI Y. Perovskite-type Li-ion solid electrolytes: a review[J]. J Mater Sci: Mater Electron, 2021, 32(8): 9736-9754. |
21 | SUN C, ALONSO J A, BIAN J. Recent advances in perovskite-type oxides for energy conversion and storage applications[J]. Adv Energy Mater, 2021, 11(2): 2000459. |
22 | JIAN Z, HU Y S, JI X, et al. Nasicon-structured materials for energy storage[J]. Adv Mater, 2017, 29(20): 1601925. |
23 | HOU M, LIANG F, CHEN K, et al. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries[J]. Nanotechnol, 2020, 31(13): 132003. |
24 | MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed, 2007, 46(41): 7778-7781. |
25 | BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chem Rev, 2016, 116(1): 140-162. |
26 | LUO W, GONG Y, ZHU Y, et al. Reducing interfacial resistance between garnet‐structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Adv Mater, 2017, 29(22): 1606042. |
27 | PENG H, WU Q, XIAO L. Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol-gel process[J]. J Sol-Gel Sci Technol, 2013, 66(1): 175-179. |
28 | O'CALLAGHAN M P, LYNHAM D R, CUSSEN E J, et al. Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln=Y, Pr, Nd, Sm-Lu)[J]. Chem Mater, 2006, 18(19): 4681-4689. |
29 | O'CALLAGHAN M P, POWELL A S, TITMAN J J, et al. Switching on fast lithium ion conductivity in garnets: the structure and transport properties of Li3+ xNd3Te2- xSbxO12[J]. Chem Mater, 2008, 20(6): 2360-2369. |
30 | RAMAKUMAR S, DEVIANNAPOORANI C, DHIVYA L, et al. Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Prog Mater Sci, 2017, 88: 325-411. |
31 | AWAKA J, TAKASHIMA A, KATAOKA K, et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12[J]. Chem Lett, 2011, 40(1): 60-62. |
32 | AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. J Solid State Chem, 2009, 182(8): 2046-2052. |
33 | WANG C, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries[J]. Chem Rev, 2020, 120(10): 4257-4300. |
34 | ADAMS S, RAO R. Ion transport and phase transition in Li7- xLa3(Zr2 xMx)O12 (M=Ta5+, Nb5+, x=0, 0.25)[J]. J Mater Chem, 2012, 22(4): 1426-1434. |
35 | XIE H, ALONSO J A, LI Y, et al. Lithium distribution in aluminum-free cubic Li7La3Zr2O12[J]. Chem Mater, 2011, 23(16): 3587-3589. |
36 | THOMPSON T, SHARAFI A, JOHANNES M D, et al. A tale of two sites: on defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries[J]. Adv Energy Mater, 2015, 5(11): 1500096. |
37 | QIN Z, XIE Y, MENG X, et al. High cycling stability enabled by Li vacancy regulation in Ta-doped garnet-type solid-state electrolyte[J]. J Eur Ceram Soc, 2023, 43(5): 2023-2032. |
38 | YANG H, WU N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review[J]. Energy Sci Eng, 2022, 10(5): 1643-1671. |
39 | RAMZY A, THANGADURAI V. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes[J]. ACS Appl Mater Interfaces, 2010, 2(2): 385-390. |
40 | LI Y, HAN J T, WANG C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. J Mater Chem, 2012, 22(30): 15357-15361. |
41 | BUCHELI W, DURAN T, JIMENEZ R, et al. On the influence of the vacancy distribution on the structure and ionic conductivity of A-site-deficient LixSrxLa2/3- xTiO3 perovskites[J]. Inorg Chem, 2012, 51(10): 5831-5838. |
42 | XIANG X, LIU Y, CHEN F, et al. Crystal structure and lithium ionic transport behavior of Li site doped Li7La3Zr2O12[J]. J Eur Ceram Soc, 2020, 40(8): 3065-3071. |
43 | GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor[J]. Inorg Chem, 2011, 50(3): 1089-1097. |
44 | XU B, DUAN H, XIA W, et al. Multistep sintering to synthesize fast lithium garnets[J]. J Power Sources, 2016, 302: 291-297. |
45 | ZHUANG L, HUANG X, LU Y, et al. Phase transformation and grain-boundary segregation in Al-doped Li7La3Zr2O12 ceramics[J]. Ceram Int, 2021, 47(16): 22768-22775. |
46 | MURUGAN R, RAMAKUMAR S, JANANI N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet[J]. Electrochem Commun, 2011, 13(12): 1373-1375. |
47 | QIN S, ZHU X, JIANG Y, et al. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity[J]. Appl Phys Lett, 2018, 112(11): 113901. |
48 | WAGNER R, REDHAMMER G J, RETTENWANDER D, et al. Fast Li-ion-conducting garnet-related Li7-3 xFexLa3Zr2O12 with uncommon I 4 ¯ 3d Structure[J]. Chem Mater, 2016, 28(16): 5943-5951. |
49 | BERNUY-LOPEZ C, MANALASTAS J R W, LOPEZ DEL AMO J M, et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chem Mater, 2014, 26(12): 3610-3617. |
50 | RETTENWANDERE D, GEIGER C A, TRIBUS M, et al. A synthesis and crystal chemical study of the fast ion conductor Li7-3 xGaxLa3Zr2O12 with x=0.08 to 0.84[J]. Inorg Chem, 2014, 53(12): 6264-6269. |
51 | THANGADURAI V, WEPPNER W. Li6ALa2Nb2O12 (A=Ca, Sr, Ba): a new class of fast lithium ion conductors with garnet-like structure[J]. J Am Ceram Soc, 2005, 88(2): 411-418. |
52 | DUMON A, HUANG M, SHEN Y, et al. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet[J]. Solid State Ionics, 2013, 243: 36-41. |
53 | RANGASAMY E, WOLFENSTINE J, ALLEN J, et al. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7- xLa3- xAxZr2O12 garnet-based ceramic electrolyte[J]. J Power Sources, 2013, 230: 261-266. |
54 | LI Y T, WANG C A, XIE H, et al. High lithium ion conduction in garnet-type Li6La3ZrTaO12[J]. Electrochem Commun, 2011, 13(12): 1289-1292. |
55 | ZHU Y, CONNELL J G, TEPAVCEVIC S, et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal[J]. Adv Energy Mater, 2019, 9(12): 1803440. |
56 | SHAO C, YU Z, LIU H, et al. Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte[J]. Electrochim Acta, 2017, 225: 345-349. |
57 | LIU X, LI Y, YANG T, et al. High lithium ionic conductivity in the garnet-type oxide Li7-2 xLa3Zr2- xMoxO12 (x=0~0.3) ceramics by sol-gel method[J]. J Am Ceram Soc, 2017, 100(4): 1527-1533. |
58 | RAMAKUMAR S, SATYANARAYANA L, MANORAMA S V, et al. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors[J]. Phys Chem Chem Phys, 2013, 15(27): 11327-11338. |
59 | DEVIANNAPOORANI C, DHIVYA L, RAMAKUMAR S, et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. Power Sources, 2013, 240: 18-25. |
60 | DHIVYA L, JANANI N, PALANIVEL B, et al. Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets[J]. AIP Adv, 2013, 3(8): 082115. |
61 | CAO S, SONG S, XIANG X, et al. Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: a review[J]. J Korean Ceram Soc, 2019, 56(2): 111-129. |
62 | MA X, XU Y. Efficient anion fluoride-doping strategy to enhance the performance in garnet-type solid electrolyte Li7La3Zr2O12[J]. ACS Appl Mater Interfaces, 2022, 14(2): 2939-2948. |
63 | DONG B, YEANDEL S R, GODDARD P, et al. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte[J]. Chem Mater, 2019, 32(1): 215-223. |
64 | WANG M, SAKAMOTO J. Dramatic reduction in the densification temperature of garnet-type solid electrolytes[J]. Ionics, 2018, 24(7): 1861-1868. |
65 | KUMAZAKI S, IRIYAMA Y, KIM K H, et al. High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si[J]. Electrochem Commun, 2011, 13(5): 509-512. |
66 | SHIN D O, OH K, KIM K M, et al. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction[J]. Sci Rep, 2015, 5: 18053. |
67 | MEESALA Y, LIAO Y K, JENA A, et al. An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12[J]. J Mater Chem A, 2019, 7(14): 8589-8601. |
68 | XIANG H, XXING Y, DAI F Z,et al. High-entropy ceramics: present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10(3): 385-441. |
69 | FU Z, FERGUSON J. Processing and characterization of an Li7La3Zr0.5Nb0.5Ta0.5Hf0.5O12 high-entropy Li-garnet electrolyte[J]. J Am Ceram Soc, 2022, 105(10): 6175-6183. |
70 | AFYON S, KRUMEICH F, RUPP J L M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries[J]. J Mater Chem A, 2015, 3(36): 18636-18648. |
71 | SHAO C, LIU H, YU Z, et al. Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method[J]. Solid State Ionics, 2016, 287: 13-16. |
72 | POLIZOS G, SHARMA J, JAFTA C J, et al. Nanostructured ligament and fiber Al-doped Li7La3Zr2O12 scaffolds to mediate cathode-electrolyte interface chemistry[J]. J Power Sources, 2021, 513: 230551. |
73 | DJENADIC R, BOTROS M, BENEL C, et al. Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications[J]. Solid State Ionics, 2014, 263: 49-56. |
74 | RANGASAMY E, WOLFENSTINE J, SAKAMOTO J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12[J].Solid State Ionics, 2012, 206: 28-32. |
75 | WANG M, SAKAMOTO J. Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface[J]. J Power Sources, 2018, 377: 7-11. |
76 | KAMMAMPATA S P, BASAPPA R H, ITO T, et al. Microstructural and electrochemical properties of alkaline earth metal-doped Li garnet-type solid electrolytes prepared by solid-state sintering and spark plasma sintering methods[J]. ACS Appl Energy Mater, 2019, 2(3): 1765-1773. |
77 | CUI C, YE Q, ZENG C, et al. One-step fabrication of garnet solid electrolyte with integrated lithiophilic surface[J]. Energy Stor Mater, 2022, 45: 814-820. |
78 | ZHANG Y, CHEN F, TU R, et al. Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes[J]. Solid State Ionics, 2016, 284: 53-60. |
79 | LI H Y, HUANG B, HUANG Z, et al. Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering[J]. Ceram Int, 2019, 45(14): 18115-18118. |
80 | LI C, LIU Y, HE J, et al. Ga-substituted Li7La3Zr2O12: an investigation based on grain coarsening in garnet-type lithium ion conductors[J]. J Alloys Compd, 2017, 695: 3744-3752. |
81 | ROSERO-NAVARRO N C, YAMASHITA T, MIURA A, et al. Effect of sintering additives on relative density and Li-ion conductivity of Nb-doped Li7La3Zr2O12 solid electrolyte[J]. J Am Ceram Soc, 2017, 100(1): 276-285. |
82 | ZHANG K, XU T, ZHAO H, et al. Unveiling the roles of alumina as a sintering aid in Li-garnet solid electrolyte[J]. Int J Energy Res, 2020, 44(11): 9177-9184. |
83 | LI Y, CAO Y, GUO X. Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes[J]. Solid State Ionics, 2013, 253: 76-80. |
84 | LI C, ISHII A, ROY L, et al. Solid-state reactive sintering of dense and highly conductive Ta-doped Li7La3Zr2O12 using CuO as a sintering aid[J]. J Mater Sci, 2020, 55: 16470-16481. |
85 | LIN J, WU L, HUANG Z, et al. La2Zr2O7 and MgO co-doped composite Li-garnet solid electrolyte[J]. J Energy Chem, 2020, 40: 132-136. |
86 | LI Q, LIU H, GAO C, et al. Investigation the electrochemical properties of LiCl-LiBr-LiF-doped Li7La3Zr2O12 electrolyte for lithium thermal batteries[J]. Ionics, 2020, 26: 3875-3882. |
87 | TIAN Y, DING F, ZHONG H, et al. Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries[J]. Energy Stor Mater, 2018, 14: 49-57. |
88 | TADANAGA K, TAKANO R, ICHINOSE T, et al. Low temperature synthesis of highly ion conductive Li7La3Zr2O12-Li3BO3 composites[J]. Electrochem Commun, 2013, 33: 51-54. |
89 | ZHENG C, SU J, SONG Z, et al. Sintering promotion and electrochemical performance of garnet-type electrolyte with Li2CuO2 additive[J]. J Alloys Compd, 2023, 933: 167810. |
90 | KANAI K, OZAWA S, KOZAWA T, et al. Low temperature synthesis of Ga-doped Li7La3Zr2O12 garnet-type solid electrolyte by mechanical method[J]. Adv Powder Technol, 2021, 32(10): 3860-3868. |
[1] | Fang-Zheng HU, Xing GAO, Lei LIU, Tian-Heng YUAN, Ning CAO, Kai LI, Ya-Tao WANG, Jian-Hua LI, Hui-Qin LIAN, Xiao-Dong WANG, Xiu-Guo CUI. Advances in Black Phosphorus Anode Advantages and Optimization in Li-ion Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 571-582. |
[2] | Lin-Hu SONG, Shi-You LI, Jie WANG, Jing-Jing ZHANG, Ning-Shuang ZHANG, Dong-Ni ZHAO, Fei XU. Research Progress of Additives for Acid and Water Removal in Electrolyte of Lithium Ion Battery [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 697-706. |
[3] | Qi ZHANG, Qian ZHANG, Xiao-Meng SHI, Ya-Qi KONG, Ke-Xin GAO, Ya-Ping DU. Research Progress of Rare Earth Bromides Based Solid Electrolytes for All⁃Solid⁃State Batteries [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 585-598. |
[4] | Yu-Le WANG, Ke-Li YANG, Yan-Fang GAO. Preparation and Electrochemical Properties of Molybdenum Carbide Modified Silica [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1716-1725. |
[5] | Ying ZHAO, Yi-Jia SHAO, Luo-Qian LI, Jian-Wei REN, Shi-Jun LIAO. Research Progress on the Degradation Mechanism and Cycle Stability Improvement of Lithium-Rich Cathode Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 205-222. |
[6] | HU Chen,JIN Yi,ZHU Shaoqing,XU Ye,SHUI Jianglan. Methods for Improving Low-Temperature Performance of Lithium Iron Phosphate Based Li-Ion Battery [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 380-386. |
[7] | LIU Lixin, DONG Jianhong, ZHANG Guanghui, ZHU Luyi, WANG Xinqiang, XU Dong, CHOW Yuktak. Preparation and Properties of Polyvinylidene Fluoride@Diatomite Fiber Membranes by Eletrospinning as Separator of Lithium-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1441-1446. |
[8] | ZUO Zicheng,LI Yuliang. Applications of Graphdiyne in Li+/Na+ Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1057-1066. |
[9] | ZHOU Jun, LEI Xiaomin, WANG Xiao*, LUO Wei, JIAO Huan*. Improved Luminescence Properties of Cerium-doped Yttrium Aluminum Garnet Phosphor Through Post-processing [J]. Chinese Journal of Applied Chemistry, 2014, 31(05): 577-580. |
[10] | LIU Jianben1*, MO Rubao2, WU Xianming1. Preparation and Electrochemical Performances of Li(Ni1/3Co1/3Mn1/3)0.95Al0.05O2 Cathode Material for Lithium-ion Batteries [J]. Chinese Journal of Applied Chemistry, 2014, 31(04): 462-468. |
[11] | HAN Tao1,2, CAO Shixiu2, ZHAO Cong1, TU Mingjing1,2*, ZHU Dachuan1, LEI Yu2. Progress in Morphological and Size Control of Cerium-doped Yttrium Aluminium Garnet Yellow Phosphors [J]. Chinese Journal of Applied Chemistry, 2012, 29(07): 733-739. |
[12] | ZHANG Kai, BAI Hongmei, CHENG Fangyi, CHEN Jun*. Preparation of Sn Films by Vacuum Evaporation and Their Electrochemical Properties as Lithium-storage Materials [J]. Chinese Journal of Applied Chemistry, 2011, 28(08): 918-923. |
[13] | YAO Yi-Wen, XU Jie, YAO Wan-Hao, WANG Zhou-Cheng*, YANG Yong. Effect of Ethylene Sulfate as Electrolyte Additive on Performance of Li-ion Batteries [J]. Chinese Journal of Applied Chemistry, 2010, 27(07): 823-828. |
[14] | Jiang Yi, Yan Jingwang, Wang Shizhong, Yu Chunying, Li Wenzhao. AC Impedance Study of Pt/YSZ at High Temperature [J]. Chinese Journal of Applied Chemistry, 1998, 0(2): 1-5. |
[15] | Guan Jianguo, Xie Hongquan. Conductivity of AB Crosslinked Polyether Solid Electrolytes and Their Properties as Electrorheological Fluids [J]. Chinese Journal of Applied Chemistry, 1997, 0(2): 16-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||