
Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (7): 1065-1072.DOI: 10.19894/j.issn.1000-0518.210214
• Full Papers • Previous Articles Next Articles
Received:
2021-04-30
Accepted:
2021-08-20
Published:
2022-07-01
Online:
2022-07-11
Contact:
Wang LI
About author:
2019014@tyust.edu.cnSupported by:
CLC Number:
Wang LI. Morphology Control and Catalytic Dehydrogenation Performance of Zeolitic Imidazolate Frameworks⁃8[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1065-1072.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210214
序号 Num | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
n(Zn2+)/n(2?甲基咪唑) n(Zn2+)/n(Hmim) | 0.2 | 0.12 | 0.1 | 0.06 | 0.03 | 0.01 | 0.008 | 0.005 |
形貌 Morphology | 截角立方体 Truncated cube | 截角十二面体 Truncated dodecahedron | 截角十二面体 Truncated dodecahedron | 十二面体 Dodecahedron | 十二面体 Dodecahedron | 十二面体 Dodecahedron | 十二面体 Dodecahedron | 十二面体 Dodecahedron |
粒径/nm Patical size/nm | 1500 | 800 | 800 | 800 | 350 | 250 | 250 | 250 |
Table 1 The morphology and particle size of ZIF?8 synthesized with different molar ratios of Zn2+/Hmim
序号 Num | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
n(Zn2+)/n(2?甲基咪唑) n(Zn2+)/n(Hmim) | 0.2 | 0.12 | 0.1 | 0.06 | 0.03 | 0.01 | 0.008 | 0.005 |
形貌 Morphology | 截角立方体 Truncated cube | 截角十二面体 Truncated dodecahedron | 截角十二面体 Truncated dodecahedron | 十二面体 Dodecahedron | 十二面体 Dodecahedron | 十二面体 Dodecahedron | 十二面体 Dodecahedron | 十二面体 Dodecahedron |
粒径/nm Patical size/nm | 1500 | 800 | 800 | 800 | 350 | 250 | 250 | 250 |
Fig.6 Dehydrogenation test curves of (A) ZIF-8/Pt0.002@Fe0.1,ZIF-8/Pt0.002@Co0.1 and ZIF-8/Pt0.002@Ni0.1 and (B) ZIF-8/Pt0.002@Ni0.1 and ZIF-8/Pt0.002@Ni0.2
1 | TOMIC E A. Thermal stablity of coordination polymers[J]. J Appl Polym Sci, 1965, 9(11): 3745-3752. |
2 | XIE Z, YANG J, WANG J, et al. Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube[J]. Chem Commun, 2012, 48(48): 5977-5979. |
3 | LU G, HUPP L J T. Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases[J]. J Am Chem Soc, 2010, 132(23): 7832-7833. |
4 | TRAN U, LE K, PHAN N. Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J]. ACS Catal, 2011, 1(2): 120-127. |
5 | PARK K S, ZHENG N, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS, 2006, 103(27): 10186-10191. |
6 | MOGGACH S A, BENNETT T, CHEETHAM A. The effect of pressure on ZIF increasing pore zize with pressure and the formation of a high-pressure phase at 1.47 GPa[J]. Angew Chem Int Ed, 2009, 48(38): 7087-7089. |
7 | FAIREN-JIMENEZ D, MOGGACH S A, WHARMBY M T, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations[J]. J Am Chem Soc, 2011, 133(23): 8900-8902. |
8 | WANG F, TAN Y X, YANG H, et al. A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake[J]. Chem Commun, 2011, 47(20): 5828-5830. |
9 | 田龙, 豆维新, 杨玮婷. 不同尺寸ZIF-8对U(VI)的吸附性能[J]. 应用化学, 2021, 38(1): 84-91. |
TIAN L, DOU W X, YANG W T. Size effect of ZIF-8 on the adsorption of uranium[J]. Chinese J Appl Chem, 2021, 38(1): 84-91. | |
10 | ZHANG X F, LIU Y G, KONG L Y, et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes[J]. J Mater Chem A, 2013, 1(36): 10635-10638. |
11 | DANG T T, ZHU Y H, NGIAM JOYCE S Y, et al. Palladium nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for aminocarbonylation[J]. ACS Catal, 2013, 3(6): 1406-1410. |
12 | ZHANT T, ZHANG X F, YAN X J, et al. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor[J]. Chem Eng J, 2013, 228: 398-404. |
13 | 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664. |
HU Q Q, GUO H Z, DOU H J. Size control and biomedical applications of ZIF-8 nanoparticales[J]. Prog Chem, 2020, 32(5): 656-664. | |
14 | BEH J J, LIM J K, NG E P, et al. Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): from the perspective of reaction kinetics and thermodynamics of nucleation[J]. Mater Chem Phys, 2018, 216: 393-401. |
15 | BATS N, CHIZALLET C, LAZARE S, et al, Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations[J]. J Am Chem Soc, 2010, 132(35): 12365-12377. |
16 | NGUVEN L L, LE K A, TRUONG H, et al. Metal-organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst[J]. Catal Sci Technol, 2012, 2: 521-528. |
17 | PAN S Y, ZHENG L P, NIE R F, et al. Transesterification of glycerol with dimethyl carbonate to glycerol carbonate over Na-based zeolites[J]. Chinese J Catal, 2012, 33: 688-696. |
18 | TAHERI M, TSUZUKI T. Photo-accelerated hydrolysis of metal organic framework ZIF-8[J]. ACS Mater Lett, 2021, 3(2): 255-260. |
19 | JIANG H L, BO L, AKITA T, et al. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework[J]. J Am Chem Soc, 2009, 131: 11302-11303. |
20 | LU G, LI S Z, GUO Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nat Chem, 2012, 4(4): 310-316. |
21 | KUO C H, TANG Y, CHOU L Y, et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. J Am Chem Soc, 2012, 134(35): 14345-14348. |
22 | BUX H, LIANG F Y, LI Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. J Am Chem Soc, 2009, 131(44): 16000-16001. |
23 | CRAVILLON J, MÜNZER S, LOHMEIER S J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chem Mater, 2009, 21(8): 1410-1412. |
24 | HOWARTH A J, LIU Y, PENG L, et al. Chemical, thermal and mechanical stabilitie of metal-organic frameworks[J]. Nat Rev Mater, 2016, 1: 15018. |
[1] | Yi-Cheng ZHANG, Fei ZHA, Xiao-Hua TANG, Yue CHANG, Hai-Feng TIAN, Xiao-Jun GUO. Research Progress of Heterogeneous Catalytic Preparation of Organic Peroxides [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 769-788. |
[2] | Xing-Quan XIONG, Hui ZHANG, Li-Zhu GAO. Progress in Chemical Modification and Application of Lignin [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819. |
[3] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[4] | Zhen-Bang LIU, Shuo ZHANG, Yu BAO, Ying-Ming MA, Wei-Qi LIANG, Wei WANG, Ying HE, Li NIU. Progress of Application Research on Cheminformatics in Deep Learning [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 360-373. |
[5] | Yan-Qin CHENG, Zhuo-Xi LI, You-Di WANG, Juan-Juan XU, Zheng BIAN. Structurally Simplified 4-Hydroxyprolinamide for Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroolefins [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 146-154. |
[6] | Hong-Mei BI. Research Progress of Assembly of Phospholipid Tube in Vitro and Its Potential Application in the Field of Biology and Chemistry [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 40-51. |
[7] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[8] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[9] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
[10] | Ya-Li FENG, Lie-Jin ZHOU, Zhong-Yan CAO. Transition Metal⁃Catalyzed Cross⁃Coupling Reactions of Alkenyl Fluorides: Advances and Perspectives [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 749-759. |
[11] | Ke WANG, Xiao WANG, Shu-Yan SONG. Recent Advances in Direct Oxidation of Methane to Methanol [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 540-558. |
[12] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[13] | Xue-Ting WU, Yang YU, Shu-Yan SONG, Hong-Jie ZHANG. Artificial Carbon Sequestration Technology—Research Progress on the Catalysts for Thermal Catalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 599-615. |
[14] | Jia-He WANG, Da-Yong LIU, Wei LIU, Lin WANG, Biao DONG. Research Progress on Photocatalytic Antibacterial Application of TiO2 Nano Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 629-646. |
[15] | Li-Zhi SUN, Hao LYU, Xiao-Wen MIN, Ben LIU. Mesoporous Palladium⁃Boron Alloy Nanocatalysts: Synthesis and Performance in Methanol Oxidation Electrocatalysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 673-684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||