[1] | Sopian K, Wan Daud W R. Challenges and Future Developments in Proton Exchange Membrane Fuel Cells[J]. Renew Energy, 2006,31(5):719-727. | [2] | Daud W R W, Rosli R E, Majlan E H, et al. PEM Fuel Cell System Control:A Review[J]. Renew Energy, 2017,113:620-638. | [3] | Sharaf O Z, Orhan M F. An Overview of Fuel Cell Technology:Fundamentals and Applications[J]. Renew Sust Energy Rev, 2014,32:810-853. | [4] | Chen H, Song Z, Zhao X, et al. A Review of Durability Test Protocols of the Proton Exchange Membrane Fuel Cells for Vehicle[J]. Appl Energy, 2018,224:289-299. | [5] | Zhang T, Wang P, Chen H, et al. A Review of Automotive Proton Exchange Membrane Fuel Cell Degradation under Start-Stop Operating Condition[J]. Appl Energy, 2018,223:249-262. | [6] | Yadav R, Subhash A, Chemmencheryr N, et al. Graphene and Graphene Oxide for Fuel Cell Technology[J]. Ind Eng Chem Res, 2018,57(29):9333-9350. | [7] | Bakangura E, Wu L, Ge L, et al. Mixed Matrix Proton Exchange Membranes for Fuel Cells:State of the Art and Perspectives[J]. Prog Polym Sci, 2016,57:103-152. | [8] | Kallem P, Eguizabal A, Mallada R, et al. Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport[J]. ACS Appl Mater Interfaces, 2016,8(51):35377-35389. | [9] | Banergee S, Curtin D E. Nafion Perfluorinated Membranes in Fuel Cells[J]. J Fluorine Chem, 2004,125(8):1211-1216. | [10] | Li Q F, He R, Jensen J O, et al. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 ℃[J]. Chem Mater, 2003,15(11):4896-4915. | [11] | Ito H, Maeda T, Nakano A, et al. Properties of Nafion Membranes under PEM Water Electrolysis Conditions[J]. Int J Hydrogen Energy, 2011,36(17):10527-10540. | [12] | Wang L S, Lai A N, Lin C X, et al. Orderly Sandwich-shaped Graphene Oxide/Nafion Composite Membranes for Direct Methanol Fuel Cells[J]. J Membr Sci, 2015,492:58-66. | [13] | Yan X H, Wu R, Xu J B, et al. Monolayer Graphene-Nafion Sandwich Membrane for Direct Methanol Fuel Cells[J]. J Power Sources, 2016,311:188-194. | [14] | Pan H Y, Chen S X, Zhang Y Y, et al. Preparation and Properties of the Cross-linked Sulfonated Polyimide Containing Benzimidazole as Electrolyte Membranes in Fuel Cells[J]. J Membr Sci, 2015,476:87-94. | [15] | Ngamsantivongsa P, Lin H L, Yu T L. Crosslinked Ethyl Phosphoric acid Grafted Polybenzimidazole and Polybenzimidazole Blend Membranes for High-Temperature Proton Exchange Membrane Fuel Cells[J]. J Polym Res, 2016,23(2):1-11. | [16] | Kallem P, Drobek M, Julbe A, et al. Hierarchical Porous Polybenzimidazole Microsieves:An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids[J]. ACS Appl Mater Interfaces, 2017,9(17):14844-14857. | [17] | Chen P, Wu H J, Yuan T, et al. Electronspun Nanofiber Network Anode for a Passive Direct Methanol Fuel Cell[J]. J Power Sources, 2014,255:70-75. | [18] | Xu F, Mu S, Pan M. Mineral Nanofibre Reinforced Composite Polymer Electrolyte Membranes with Enhanced Water Retention Capability in PEM Fuel Cells[J]. J Membr Sci, 2011,377(1/2):134-140. | [19] | Choi S W, Fu Y Z, Ahn Y R, et al. Nafion-Impregnated Electrospun Polyvinylidene Fluoride Composite Membranes for Direct Methanol Fuel Cells[J]. J Power Sources, 2008,180(1):167-171. | [20] | Li H Y, Liu Y L. Nafion-functionalized Electrospun Poly(vinylidene fluoride)(PVDF) Nanofibers for High Performance Proton Exchange Membranes in Fuel Cells[J]. J Mater Chem A, 2014,2:3783-3793. | [21] | Li H Y, Lee Y Y, Lai J Y, et al. Composite Membranes of Nafion and Poly(styrene sulfonic acid)-Grafted Poly(vinylidene fluoride) Electrospun Nanofiber Mats for Fuel Cells[J]. J Membr Sci, 2014,466:238-245. | [22] | Sood R, Cavaliere S, Jones D J, et al. Electrospun Nanofibre Composite Polymer Electrolyte Fuel Cell and Electrolysis Membranes[J]. Nano Energy, 2016,26:729-745. | [23] | Kakade M V, Givens S, Gardner K, et al. Electric Field Induced Orientation of Polymer Chains in Macroscopically Aligned Electrospun Polymer Nanofibers[J]. J Am Chem Soc, 2007,129(10):2777-2782. | [24] | Gong X, He G, Wu Y, et al. Aligned Electrospun Nanofibers as Proton Conductive Channels Through Thickness of Sulfonated Poly(phthalazinone ether sulfone ketone) Proton Exchange Membranes[J]. J Power Sources, 2017,358:134-141. | [25] | Matsushita S, Kim J D. Organic Solvent-free Preparation of Electrolyte Membranes with High Proton Conductivity Using Aromatic Hydrocarbon Polymers and Small Cross-linker Molecules[J]. Solid State Ionics, 2018,316:102-109. | [26] | Miyake J, Miyatake K. Fluorine-free Sulfonated Aromatic Polymers as Proton Exchange Membranes[J]. Polym J, 2017,49:487. | [27] | Tamura T, Kawakami H. Aligned Electrospun Nanofiber Composite Membranes for Fuel Cell Electrolytes[J]. Nano Lett, 2010,10(4):1324-1328. | [28] | Tamura T, Takemori R, Kawakami H. Proton Conductive Properties of Composite Membranes Containing Uniaxially Aligned Ultrafine Electrospun Polyimide Nanofiber[J]. J Power Sources, 2012,217:135-141. | [29] | Karube Y, Kawakami H. Fabrication of Well-Aligned Electrospun Nanofibrous Membrane Based on Fluorinated Polyimide[J]. Polym Adv Technol, 2010,21(12):861-866. | [30] | Fukushima S, Karube Y, Kawakami H. Preparation of Ultrafine Uniform Electrospun Polyimide Nanofiber[J]. Polym J, 2010,42:514. | [31] | Takemori R, Ito G, Tanaka M, et al. Ultra-High Proton Conduction in Electrospun Sulfonated Polyimide Nanofibers[J]. RSC Adv, 2014,4(38):20005-20009. | [32] | Quartarone E, Angioni S, Mustarelli P. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells:A Critical Review[J]. Materials, 2017,10(7):687. | [33] | Bose S, Kuila T, Nguyen T X H, et al. Polymer Membranes for High Temperature Proton Exchange Membrane Fuel Cell:Recent Advances and Challenges[J]. Prog Polym Sci, 2011,36(6):813-843. | [34] | He G, Li Z, Zhao J. Nanostructured Ion-Exchange Membranes for Fuel Cells:Recent Advances and Perspectives[J]. Adv Mater, 2015,27(36):5280-5295. | [35] | Eguiz bal A, Sgroi M, Pullini D, et al. Nanoporous PBI Membranes by Track Etching for High Temperature PEMs[J]. J MembrSci, 2014,454:243-252. | [36] | Araya S S, Zhou F, Liso V, et al. A Comprehensive Review of PBI-Based High Temperature PEM Fuel Cells[J]. Int J Hydrogen Energy, 2016,41(46):21310-21344. | [37] | Zuo Z, Fu Y, Manthiram A. Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells[J]. Polymers, 2012,4(4):1627-1644. | [38] | Asensio J A, Sanchez E M, Gomez-Romero P. Proton-Conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells. A Chemical Quest[J]. Chem Soc Rev, 2010,39(8):3210-3239. | [39] | He R, Li Q, Bach A, et al. Physicochemical Properties of Phosphoric Acid Doped Polybenzimidazole Membranes for Fuel Cells[J]. J Membr Sci, 2006,277(1/2):38-45. | [40] | Lobato J, Ca izares P, Rodrigo M A, et al. Improved Polybenzimidazole Films for H3PO4-Doped PBI-Based High Temperature PEMFC[J]. J Membr Sci, 2007,306(1/2):47-55. | [41] | Guan Y S, Pu H T, Jin M, et al. Preparation and Characterisation of Proton Exchange Membranes Based on Crosslinked Polybenzimidazole and Phosphoric Acid[J]. Fuel Cells, 2010,10(6):973-982. | [42] | Kim J S, Reneker D H. Polybenzimidazole Nanofiber Produced by Electrospinning[J]. Polym Eng Sci, 2004,39(5):849-854. | [43] | Han N K, Ryu J H, Park D U, et al. Fabrication and Electrochemical Characterization of Polyimide-Derived Carbon Nanofibers for Self-standing Supercapacitor Electrode Materials[J]. J Appl Polym Sci, 2019,136(32):47846. | [44] | Yao J, Bastiaansen W C, Peijs T. High Strength and High Modulus Electrospun Nanofibers[J]. Fibers, 2014,2(2):158-186. | [45] | Li H Y, Liu Y L. Polyelectrolyte Composite Membranes of Polybenzimidazole and Crosslinked Polybenzimidazole-Polybenzoxazine Electrospun Nanofibers for Proton Exchange Membrane Fuel Cells[J]. J Mater Chem A, 2013,1(4):1171-1178. | [46] | Fu F Y, Xu H L, Dong Y, et al. Design of Polyphosphazene-based Graft Copolystyrenes with Alkylsulfonate Branch Chains for Proton Exchange Membranes[J]. J Membr Sci, 2015,489:119-128. | [47] | Fu F Y, Xu H L, Dong Y, et al. Polyphosphazene-based Copolymers Containing Pendant Alkylsulfonic Acid Groups as Proton Exchange Membranes[J]. Solid State Ionics, 2015,278:58-64. | [48] | Jahangiri S, Aravi ?, I??kel ?anl? L, et al. Fabrication and Optimization of Proton Conductive Polybenzimidazole Electrospun Nanofiber Membranes[J]. Polym Adv Technol, 2018,29(1):594-602. | [49] | Muthuraja P, Prakash S, Shanmugam V M, et al. Stable Nanofibrous Poly(arylsulfone ether benzimidazole) Membrane with High Conductivity for High Temperature PEM Fuel Cells[J]. Solid State Ionics, 2018,317:201-209. | [50] | Iulianelli A, Basile A. Sulfonated PEEK-Based Polymers in PEMFC and DMFC Applications:A Review[J]. Int J Hydrogen Energy, 2012,37(20):15241-15255. | [51] | Wang J, He Y, Zhao L, et al. Enhanced Proton Conductivities of Nanofibrous Composite Membranes Enabled by Acid-Base Pairs under Hydrated and Anhydrous Conditions[J]. J Membr Sci, 2015,482:1-12. | [52] | Dong C, Hao Z, Wang Q, et al. Facile Synthesis of Metal Oxide Nanofibers and Construction of Continuous Proton-Conducting Pathways in SPEEK Composite Membranes[J]. Int J Hydrogen Energy, 2017,42(40):25388-25400. | [53] | Liu X, Yang Z, Zhang Y, et al. Electrospun Multifunctional Sulfonated Carbon Nanofibers for Design and Fabrication of SPEEK Composite Proton Exchange Membranes for Direct Methanol Fuel Cell Application[J]. Int J Hydrogen Energy, 2017,42(15):10275-10284. | [54] | Xu X, Li L, Wang H, et al. Solution Blown Sulfonated Poly(ether ether ketone) Nanofiber-Nafion Composite Membranes for Proton Exchange Membrane Fuel Cells[J]. RSC Adv, 2015,5(7):4934-4940. | [55] | Boaretti C, Pasquini L, Sood R, et al. Mechanically Stable Nanofibrous SPEEK/Aquivion Composite Membranes for Fuel Cell Applications[J]. J Membr Sci, 2018,545:66-74. | [56] | Sadrjahani M, Gharehaghaji A A, Javanbakht M. Aligned Electrospun Sulfonated Polyetheretherketone Nanofiber Based Proton Exchange Membranes for Fuel Cell Applications[J]. Polym Eng Sci, 2017,57(8):789-796. | [57] | Gong X, He G, Wu Y, et al. Aligned Electrospun Nanofibers as Proton Conductive Channels Through Thickness of Sulfonated Poly(phthalazinone ether sulfone ketone) Proton Exchange Membranes[J]. J Power Sources, 2017,358:134-141. | [58] | Fu F Y, Xu H L, He M L, et al. Composite Polyphosphazene Membranes Doped with Phosphotungstic Acid and Silica[J]. Chinese J Polym Sci, 2014,32(8):996-1002. | [59] | Ketpang K, Lee K, Shanmugam S. Facile Synthesis of Porous Metal Oxide Nanotubes and Modified Nafion Composite Membranes for Polymer Electrolyte Fuel Cells Operated under Low Relative Humidity[J]. Appl Mater Interfaces, 2014,6(19):16734-16744. | [60] | Ketpang K, Shanmugam S, Suwanboon S, et al. Efficient Water Management of Composite Membranes Operated in Polymer Electrolyte Membrane Fuel Cells under Low Relative Humidity[J]. J Membr Sci, 2015,493:285-298. | [61] | Zhen D X, Zhao B, Shin H C, et al. Electrospun Porous Perovskite La0.6Sr0.4Co1-xFexO3-δ Nanofibers for Efficient Oxygen Evolution Reaction[J]. Adv Mater Interfaces, 2017,4(13):1700146. | [62] | Lee C, Jo S M, Choi J, et al. SiO2/Sulfonated Poly Ether Ether Ketone(SPEEK) Composite Nanofiber Mat Supported Proton Exchange Membranes for Fuel Cells[J]. J Membr Sci, 2013,48(10):3665-3671. | [63] | Li H Y, Lee Y Y, Lai J Y, et al. Composite Membranes of Nafion and Poly(Styrene Sulfonic Acid)-Grafted Poly(vinylidene fluoride) Electrospun Nanofiber Mats for Fuel Cells[J]. J Membr Sci, 2014,466:238-245 | [64] | Li H Y, Liu Y L. Nafion-Functionalized Electrospun Poly(Vinylidene Fluoride)(PVDF) Nanofibers for High Performance Proton Exchange Membranes in Fuel Cells[J]. J Mater Chem A, 2014,2:3783-3793. | [65] | Dos Santos L, Rose S, Sel O, et al. Electrospinning a Versatile Tool for Designing Hybrid Proton Conductive Membrane[J]. J Membr Sci, 2016,513:12-19. | [66] | ZHANG Yingying, KANG Lijuan, HAN Zhaolian, et al. Preparation of Anti-layered Polyamide-66/Polyacrylonitrile/Polyethersulfone(PA-66/PAN/PES) Sandwich Structured Membrane for Air Filtration by Electrospinning[J]. Chem J Chinese Univ, 2017,38(6):1025-1032(in Chinese). 张莹莹,康立娟,韩櫂濂,等. 静电纺丝制备空气过滤用抗分层聚酰胺66/聚丙烯腈/聚醚砜(PA-66/PAN/PES)三明治结构膜[J]. 高等学校化学学报, 2017,38(6):1025-1032. | [67] | XIE Ruyi, ZHANG Linping, XU Hong, et al. Preparation of Bi20TiO32/Polyacrylonitrile Composite Nanofibers and Their Photocatalytic Activity for Degradation of Isoproturon[J]. Chinese J Appl Chem, 2017,34(6):656-663(in Chinese). 谢汝义,张琳萍,徐红,等. Bi20TiO32/聚丙烯腈复合纳米纤维的制备及其对异丙隆的光催化降解性能[J]. 应用化学, 2017,34(6):656-663. | [68] | Subramanian C, Weiss R A, Shaw M T. Fabrication and Characterization of Conductive Nanofiber-Based Composite Membranes[J]. Ind Eng Chem Res, 2013,52(43):15088-15093. | [69] | Yu D M, Yoon S, Kim T H, et al. Properties of Sulfonated Poly(arylene ether sulfone)/Electrospun Nonwoven Polyacrylonitrile Composite Membrane for Proton Exchange Membrane Fuel Cells[J]. J Membr Sci, 2013,446:212-219. | [70] | Gong C, Liu H, Zhang B, et al. High Level of Solid Superacid Coated Poly(vinylidene fluoride) Electrospun Nanofiber Composite Polymer Electrolyte Membranes[J]. J Membr Sci, 2017,535:113-121. | [71] | Won J H, Lee H J, Lim J M, et al. Anomalous Behavior of Proton Transport and Dimensional Stability of Sulfonated Poly(arylene ether sulfone) Nonwoven/Silicate Composite Proton Exchange Membrane with Dual Phase Co-continuous Morphology[J]. J Membr Sci, 2014,450:235-241. |
|