[1] | Manthiram A, Fu Y, Chung S H, et al. Rechargeable Lithium-Sulfur Batteries[J]. Chem Rev, 2014,114(23):11751-11787. | [2] | Seh Z W, Sun Y, Zhang Q, et al. Designing High-Energy Lithium-Sulfur Batteries[J]. Chem Soc Rev, 2016,45(20):5605-5634. | [3] | Boyd D A. Sulfur and Its Role In Modern Materials Science[J]. Angew Chem Int Ed, 2016,55(50):15486-15502. | [4] | Manthiram A, Chung S H, Zu C. Lithium-Sulfur Batteries:Progress and Prospects[J]. Adv Mater, 2015,27(12):1980-2006. | [5] | Kamyshny A, Gun J, Rizkov D, et al. Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at Different Temperatures by Rapid Single Phase Derivatization[J]. Environ Sci Technol, 2007,41(7):2395-2400. | [6] | Mikhaylik Y V, Akridge J R. Polysulfide Shuttle Study in the Li/S Battery System[J]. J Electrochem Soc, 2004,151(11):A1969-A1976. | [7] | Shim J, Striebel K A, Cairns E J. The Lithium/Sulfur Rechargeable Cell-Effects of Electrode Composition and Solvent on Cell Performance[J]. J Electrochem Soc, 2002,149(10):A1321-A1325. | [8] | Ji X, Lee K T, Nazar L F. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries[J]. Nat Mater, 2009,8(6):500-506. | [9] | Mi Y, Liu W, Wang Q, et al. A Pomegranate-Structured Sulfur Cathode Material with Triple Confinement of Lithium Polysulfides for High-Performance Lithium-Sulfur Batteries[J]. J Mater Chem A, 2017,5(23):11788-11793. | [10] | Sahore R, Levin B D A, Pan M, et al. Design Principles for Optimum Performance of Porous Carbons in Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2016,6(14):1600134. | [11] | Li M, Zhang Y, Wang X, et al. Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur Batteries[J]. Adv Funct Mater, 2016,26(46):8408-8417. | [12] | Fang X, Weng W, Ren J, et al. A Cable-Shaped Lithium Sulfur Battery[J]. Adv Mater, 2016,28(3):491-496. | [13] | Yang J, Xie J, Zhou X, et al. Functionalized N-Doped Porous Carbon Nanofiber Webs for a Lithium Sulfur Battery with High Capacity and Rate Performance[J]. J Phy Chem C, 2014,118(4):1800-1807. | [14] | Wu Y, Gao M, Li X, et al. Preparation of Mesohollow and Microporous Carbon Nanofiber and Its Application in Cathode Material for Lithium Sulfur Batteries[J]. J Alloys Compd, 2014,608:220-228. | [15] | Elazari R, Salitra G, Garsuch A, et al. Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries[J]. Adv Mater, 2011,23(47):5641-5644. | [16] | Gueon D, Hwang J T, Yang S B, et al. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes[J]. ACS Nano, 2018,12(1):226-233. | [17] | Yoo J, Cho S J, Jung G Y, et al. COF-Net on CNT-Net as a Molecularly Designed, Hierarchical Porous Chemical Trap for Polysulfides in Lithium-Sulfur Batteries[J]. Nano Lett, 2016,16(5):3292-3300. | [18] | Wang C, Zhang F, Wang X, et al. Preparation of a Graphitic N-Doped Multi-walled Carbon Nanotube Composite for Lithium Sulfur Batteries with Long-life and High Specific Capacity[J]. RSC Adv, 2016,6(80):76568-76574. | [19] | Fei L, Li X, Bi W, et al. Graphene/Sulfur Hybrid Nanosheets from a Space-Confined “Sauna” Reaction for High-Performance Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(39):5936-5942. | [20] | Qiu Y, Li W, Zhao W, et al. High-rate, Ultralong Cycle-life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene[J]. Nano Lett, 2014,14(8):4821-4827. | [21] | Li Q, Mahmood N, Zhu J, et al. Graphene and Its Composites with Nanoparticles for Electrochemical Energy Applications[J]. Nano Today, 2014,9(5):668-683. | [22] | Al Salem H, Babu G, Rao C V, et al. Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries[J]. J Am Chem Soc, 2015,137(36):11542-11545. | [23] | Babu G, Ababtain K, Ng K Y, et al. Electrocatalysis of Lithium Polysulfides:Current Collectors as Electrodes in Li/S Battery Configuration[J]. Sci Rep, 2015,5:8763. | [24] | Lim W G, Mun Y, Cho A, et al. Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium-Sulfur Batteries[J]. ACS Nano, 2018,12(6):6013-6022. | [25] | Gnana Kumar G, Chung S H, Raj Kumar T, et al. Three-Dimensional Graphene-Carbon Nanotube Ni Hierarchical Architecture as a Polysulfide Trap for Lithium-Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2018,10(24):20627-20634. | [26] | Peng H J, Huang J Q, Liu X Y, et al. Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life:Spatial Heterogeneity Control[J]. J Am Chem Soc, 2017,139(25):8458-8466. | [27] | Yom J H, Cho S M, Hwang S W, et al. Effects of the Pd3Co Nanoparticles-Additive on the Redox Shuttle Reaction in Rechargeable Li-S Batteries[J]. J Electrochem Soc, 2016,163(10):A2179-A2184. | [28] | Rehman S, Guo S, Hou Y, et al. Rational Design of Si/SiO2@Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery[J]. Adv Mater, 2016,28(16):3167-3172. | [29] | Zhang Z, Kong L L, Liu S, et al. A High-Efficiency Sulfur/Carbon Composite Based on 3D Graphene Nanosheet@Carbon Nanotube Matrix as Cathode for Lithium-Sulfur Battery[J]. Adv Energy Mater, 2017,7(11):1602543. | [30] | Li Y J, Fan J M, Zheng M S, et al. A Novel Synergistic Composite with Multi-Functional Effects for High-Performance Li-S Batteries[J]. Energy Environ Sci, 2016,9(6):1998-2004. | [31] | Li Z Q, Li C X, Ge X L, et al. Reduced Graphene Oxide Wrapped MOFs-Derived Cobalt-Doped Porous Carbon Polyhedrons as Sulfur Immobilizers as Cathodes for High Performance Lithium Sulfur Batteries[J]. Nano Energy, 2016,23:15-26. | [32] | He J R, Chen Y F, Lv W G, et al. From Metal Organic Framework to Li2S@C Co N Nanoporous Architecture:A High Capacity Cathode for Lithium Sulfur Batteries[J]. ACS Nano, 2016,10(12):10981-10987. | [33] | Hwang J Y, Kim H M, Lee S K, et al. High-Energy, High-Rate, Lithium-Sulfur Batteries:Synergetic Effect of Hollow TiO2-Webbed Carbon Nanotubes and a Dual Functional Carbon-Paper Interlayer[J]. Adv Energy Mater, 2016,6(1):1501480. | [34] | Xiao Z, Yang Z, Wang L, et al. A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(18):2891-2898. | [35] | Li C, Li Z, Li Q, et al. MOFs Derived Hierarchically Porous TiO2 as Effective Chemical and Physical Immobilizer for Sulfur Species as Cathodes for High-Performance Lithium-Sulfur Batteries[J]. Electrochim Acta, 2016,215:689-698. | [36] | Fang M, Chen Z, Liu Y, et al. Design and Synthesis of Novel Sandwich-type C@TiO2@C Hollow Microspheres as Efficient Sulfur Hosts for Advanced Lithium-Sulfur Batteries[J]. J Mater Chem A, 2018,6(4):1630-1638. | [37] | Xiao Z, Yang Z, Wang L, et al. A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(18):2891-2898. | [38] | Li Z, Zhang J, Lou X W. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2015,54(44):12886-12890. | [39] | Ni L, Wu Z, Zhao G, et al. Core-Shell Structure and Interaction Mechanism of gamma-MnO2 Coated Sulfur for Improved Lithium-Sulfur Batteries[J]. Small, 2017,13(14):1603466. | [40] | Zhang J, Shi Y, Ding Y, et al. In Situ Reactive Synthesis of Polypyrrole-MnO2 Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium-Sulfur Battery[J]. Nano Lett, 2016,16(11):7276-7281. | [41] | Wang X, Li G, Li J, et al. Structural and Chemical Synergistic Encapsulation of Polysulfides Enables Ultralong-Life Lithium-Sulfur Batteries[J]. Energy Environ Sci, 2016,9(8):2533-2538. | [42] | Liang X, Nazar L F. In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes[J]. ACS Nano, 2016,10(4):4192-4198. | [43] | Zhao D, Qin J, Zheng L, et al. Amorphous Vanadium Oxide/Molybdenum Oxide Hybrid with Three-Dimensional Ordered Hierarchically Porous Structure as a High-Performance Li-Ion Battery Anode[J]. Chem Mater, 2016,28(12):4180-4190. | [44] | Liang X, Hart C, Pang Q, et al. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Nat Commun, 2015,6(1):6682. | [45] | Sarish T T, Zeeshan A, Huang X X, et al. Integrated Design of MnO2@Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries[J]. Small, 2017,13(20):1700087. | [46] | Liang X, Nazar L F. In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes[J]. ACS Nano, 2016,10(4): 4192-4198. | [47] | Pu J, Shen Z, Zheng J, et al. Multifunctional Co3S4@Sulfur Nanotubes for Enhanced Lithium-Sulfur Battery Performance[J]. Nano Energy, 2017,37:7-14. | [48] | Carter R, Oakes L, Muralidharan N, et al. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V2O5 and Sulfur-Filled Carbon Nanotubes for Lithium Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2017,9(8):7185-7192. | [49] | Wang C, Li K, Zhang F, et al. Insight of Enhanced Redox Chemistry for Porous MoO2 Carbon-Derived Framework as Polysulfide Reservoir in Lithium-Sulfur Batteries[J]. ACS Appl Mater Inter, 2018,10(49):42286-42293. | [50] | Wang C, Sun L, Wang X, et al. Spherical Hybrid Hierarchical Porous Structure:A Plastic Model with Tunable Inner Pores for Lithium-Sulfur Batteries[J]. Carbon, 2019,153:691-698. | [51] | Xiang M W, Wu H, Liu H, et al. A Flexible 3D Multifunctional MgO-Decorated Carbon Foam@CNTs Hybrid as Self-Supported Cathode for High-Performance Lithium-Sulfur Batteries[J]. Adv Funct Mater, 2017,27(37):1702573. | [52] | Tao X, Wang J, Liu C, et al. Balancing Surface Adsorption and Diffusion of Lithium-Polysulfides on Nonconductive Oxides for Lithium-Sulfur Battery Design[J]. Nat Commun, 2016,7:11203. | [53] | Liang X, Hart C, Pang Q, et al. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Nat Commun, 2015,6:5682. | [54] | Li Z, Zhang J T, Lou X W. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2015,54(44):12886-12890. | [55] | Wei H, Rodriguez E F, Best A S, et al. Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti4O7 Microspheres for High-Performance Li-S Battery[J]. Adv Energy Mater, 2017,7(4):1601616. | [56] | Tao Y Q, Wei Y J, Liu Y, et al. Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5 Nanocrystals for High-Rate Lithium-Sulfur Battery[J]. Energy Environ Sci, 2016,9(10):3230-3239. | [57] | Xu M, Liang T, Shi M, et al. Graphene-Like Two-Dimensional Materials[J]. Chem Rev, 2013,113(5):3766-3798. | [58] | Raybaud P, Kresse G, Hafner J, et al. Ab Initio Density Functional Studies of Transition-Metal Sulphides:I.Crystal Structure and Cohesive Properties[J]. J Phys Condens Matter, 1997,9(50):11085-11106. | [59] | Rohrbach A, Hafner J, Kresse G. Electronic Correlation Effects in Transition-Metal Sulfides[J]. J Phys Condens Matter, 2003,15(6):979-996. | [60] | Chung S H, Luo L, Manthiram A. TiS2-Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium-Sulfur Batteries[J]. ACS Energy Lett, 2018,3(3):568-573. | [61] | Cheng Z, Xiao Z, Pan H, et al. Elastic Sandwich-Type rGO-VS2/S Composites with High Tap Density:Structural and Chemical Cooperativity Enabling Lithium-Sulfur Batteries with High Energy Density[J]. Adv Energy Mater, 2018,8(10):1702337. | [62] | Xiao Z, Yang Z, Zhang L, et al. Sandwich-Type NbS2@S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium-Sulfur Batteries[J]. ACS Nano, 2017,11(8):8488-8498. | [63] | Chen T, Zhang Z, Cheng B, et al. Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries[J]. J Am Chem Soc, 2017,139(36):12710-12715. | [64] | Lu Y, Li X, Liang J, et al. A Simple Melting-Diffusing-Reacting Strategy to Fabricate S/NiS2-C for Lithium-Sulfur Batteries[J]. Nanoscale, 2016,8(40):17616-17622. | [65] | Seh Z W, Yu J H, Li W Y, et al. Two-Dimensional Layered Transition Metal Disulphides for Effective Encapsulation of High-Capacity Lithium Sulphide Cathodes[J]. Nat Commun, 2014,5(8):5017. | [66] | Zhou G, Tian H, Jin Y, et al. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li-S Batteries[J]. Proc Natl Acad Sci, 2017,114(5):840-845. | [67] | Pu J, Shen Z H, Zheng J X, et al. Multifunctional Co3S4@Sulfur Nanotubes for Enhanced Lithium-Sulfur Battery Performance[J]. Nano Energy, 2017,37:7-14. | [68] | Pang Q, Kundu D, Nazar L F. A Graphene-Like Metallic Cathode Host for Long-Life and High-Loading Lithium-Sulfur Batteries[J]. Mater Horiz, 2016,3(2):130-136 | [69] | Yuan Z, Peng H J, Hou T Z, et al. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts[J]. Nano Lett, 2016,16(1):519-527. | [70] | Tang W, Chen Z, Zheng G, et al. In Situ Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS2 Flakes[J]. J Am Chem Soc, 2017,139(29):10133-10141. | [71] | Wang H, Zhang Q, Yao H, et al. High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS2 Materials[J]. Nano Lett, 2014,14(12):7138-7144. | [72] | Babu G, Masurkar N, Al Salem H, et al. Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis[J]. J Am Chem Soc, 2017,139(1):171-178. | [73] | Park J, Yu B C, Park J S, et al. Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery[J]. Adv Energy Mater, 2017,7(11):1602567. | [74] | Zhou G M, Tian H Z, Jin Y, et al. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li-S Batteries[J]. Proc Natl Acad Sci, 2017,114(5):840-845. | [75] | Niu X Q, Wang X L, Wang D H, et al. Metal Hydroxide a New Stabilizer for the Construction of Sulfur/Carbon Composites as High-Performance Cathode Materials for Lithium-Sulfur Batteries[J]. J Mater Chem A, 2015,3(33):17106-17112. | [76] | Jiang J, Zhu J H, Ai W, et al. Encapsulation of Sulfur with Thin-Layered Nickel-Based Hydroxides for Long-Cyclic Lithium-Sulfur Cells[J]. Nat Commun, 2015,6(9):8622. | [77] | Zhang J T, Hu H, Li Z, et al. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2016,55(12):3982-3986. | [78] | Dai C, Hu L, Wang M Q, et al. Uniform α-Ni(OH)2 Hollow Spheres Constructed from Ultrathin Nanosheets as Efficient Polysulfide Mediator for Long-Term Lithium-Sulfur Batteries[J]. Energy Storage Mater, 2017,8:202-208. | [79] | Brik M G, Ma C G. First-Principles Studies of the Electronic and Elastic Properties of Metal Nitrides XN(X=Sc,Ti,V,Cr,Zr,Nb)[J]. Comput Mater Sci, 2012,51(1):380-388. | [80] | Milosev I, Strehblow H H, Navinsek B, et al. Electrochemical and Thermal-Oxidation of Tin Coatings Studied by XPS[J]. Surf Interface Anal, 1995,23(7/8):529-539. | [81] | Cui Z M, Zu C X, Zhou W D, et al. Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries[J]. Adv Mater, 2016,28(32):6926-6931. | [82] | Sun Z H, Zhang J Q, Yin L C, et al. Conductive Porous Vanadium Nitride/Graphene Composite as Chemical Anchor of Polysulfides for Lithium-Sulfur Batteries[J]. Nat Commun, 2017,8:14627. | [83] | Deng D R, Xue F, Jia Y J, et al. Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries[J]. ACS Nano, 2017,11(6):6031-6039. | [84] | Bao W, Liu L, Wang C, et al. Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2018,8(13):1702485. | [85] | Liang X, Rangom Y, Kwok C Y, et al. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts[J]. Adv Mater, 2017,29(3):1603040. | [86] | Bao W Z, Su D W, Zhang W X, et al. 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries[J]. Adv Funct Mater, 2016,26(47):8746-8756. | [87] | Zhou F, Li Z, Luo X, et al. Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li-S Batteries[J]. Nano Lett, 2018,18(2):1035-1043. | [88] | Choi J, Jeong T G, Cho B W, et al. Tungsten Carbide as a Highly Efficient Catalyst for Polysulfide Fragmentations in Li-S Batteries[J]. J Phys Chem C, 2018,122(14):7664-7669. | [89] | Su D, Cortie M, Wang G. Fabrication of N-doped Graphene-Carbon Nanotube Hybrids from Prussian Blue for Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2017,7(8):1602014. | [90] | Jiang H, Liu X C, Wu Y, et al. Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2018,57(15):3916-3921. | [91] | Hong X J, Tan T X, Guo Y K, et al. Confinement of Polysulfides within Bi-Functional Metal-Organic Frameworks for High Performance Lithium-Sulfur Batteries[J]. Nanoscale, 2018,10(6):2774-2780. | [92] | Park H, Siegel D J. Tuning the Adsorption of Polysulfides in Lithium Sulfur Batteries with Metal-Organic Frameworks[J]. Chem Mater, 2017,29(11):4932-4937. | [93] | Wang Z, Wang B, Yang Y, et al. Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2015,7(37):20999-21004. | [94] | Zhou J, Li R, Fan X, et al. Rational Design of a Metal-Organic Framework Host for Sulfur Storage in Fast, Long-Cycle Li-S Batteries[J]. Energy Environ Sci, 2014,7(8):2715-2724. | [95] | Liu Y, Li G, Fu J, et al. Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2017,56(22):6176-6180. | [96] | Chen X, Ding X, Wang C, et al. A Multi-Shelled CoP Nanosphere Modified Separator for Highly Efficient Li-S Batteries[J]. Nanoscale, 2018,10(28):13694-13701. | [97] | Fan C Y, Zheng Y P, Zhang X H, et al. High-Performance and Low-Temperature Lithium-Sulfur Batteries:Synergism of Thermodynamic and Kinetic Regulation[J]. Adv Energy Mater, 2018,8(18):1703638. |
|