[1] | Wan X, Liu X F, Li Y C, et al. Fe-N-C Electrocatalyst with Dense Active Sites and Efficient Mass Transport for High-performance Proton Exchange Membrane Fuel Cells[J]. Nat Catal, 2019,2:259-268. | [2] | Wang Z Y, Zhang H, Li N, et al. Laterally Confined Graphene Nanosheets and Graphene/SnO2 Composites as High-Rate Anode Materials for Lithium-Ion Batteries[J]. Nano Res, 2010,3(10):748-756. | [3] | Zhang C F, Quince M, Chen Z X, et al. Three-Dimensional Nanocarbon and the Electrochemistry of Nanocarbon/Tin Oxide for Lithium Ion Batteries[J]. J Solid State Electrochem, 2011,15:2645-2652. | [4] | Fan X Y, Shi X Y, Wang J, et al. Sucrose Assisted Hydrothermal Synthesis of SnO2/Graphene Nanocomposites with Improved Lithium Storage Properties[J]. J Solid State Electrochem, 2013,17:201-208. | [5] | Richard Prabakar S J, Hwang Y H, Bae E G, et al. SnO2/Graphene Composites with Self-assembled Alternating Oxide and Amine Layers for High Li-Storage and Excellent Stability[J]. Adv Mater, 2013,25:3307-3312. | [6] | Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. J Electrochem Soc, 1997,144(4):1188. | [7] | Ma S, Jiang M D, Tao P, et al. Temperature Effect and Thermal Impact in Lithium-Ion Batteries:A Review[J]. Prog Nat Sci-Mater, 2018,28:653-666. | [8] | Shang Y L, Zhu C, Lu G P, et al. Modeling and Analysis of High-Frequency Alternating-Current Heating for Lithium-Ion Batteries under Low-Temperature Operations[J]. J Power Sources, 2020,450:227435. | [9] | Ouyang M G, Chu Z Y, Lu L G, et al. Low Temperature Aging Mechanism Identification and Lithium Deposition in a Large Format Lithium Iron Phosphate Battery for Different Charge Profiles[J]. J Power Sources, 2015,286:309-320. | [10] | Zheng Y, He Y B, Qian K, et al. Influence of Charge Rate on the Cycling Degradation of LiFePO4/Mesocarbon Microbead Batteries under Low Temperature[J]. Ionics, 2017,23(8):1967-1978. | [11] | Zhang S S, Xu K, Jow T R. Electrochemical Impedance Study on the Low Temperature of Li-Ion Batteries[J]. Electrochim Acta, 2004,49(7):1057-1061. | [12] | Zhang S S, Xu K, Jow T R. A New Approach Toward Improved Low Temperature Performance of Li-Ion Battery[J]. Electrochem Commun, 2002,4(11):928-932. | [13] | Zhu S Q, Hu C, Xu Y, et al. Performance Improvement of Lithium-Ion Battery by Pulse Current[J]. J Energy Chem, 2020,46:208-214. | [14] | De Jongh P E, Notten P H L. Effect of Current Pulses on Lithium Intercalation Batteries[J]. Solid State Ionics, 2002,148:259-268. | [15] | Zhao X W, Zhang G Y, Yang L, et al. A New Charging Mode of Li-Ion Batteries with LiFePO4/C Composites under Low Temperature[J]. J Therm Anal Calorim, 2011,104:561-567. | [16] | Zhu J G, Sun Z C, Wei X Z, et al. Experimental Investigations of an AC Pulse Heating Method for Vehicular High Power Lithium-Ion Batteries at Subzero Temperatures[J]. J Power Sources, 2017,367:145-157. | [17] | Liao X Z, Ma Z F, Gong Q, et al. Low-Temperature Performance of LiFePO4/C Cathode in a Auaternary Carbonate-Based Electrolyte[J]. Electrochem Commun, 2008,10(5):691-694. | [18] | Zhang S S, Xu K, Jow T R. An Improved Electrolyte for the LiFePO4 Cathode Working in a Wide Temperature Range[J]. J Power Sources, 2006,159(1):702-707. | [19] | Zhou L, Lucht B L. Performance of Lithium Tetrafluorooxalatophosphate(LiFOP) Electrolyte with Propylene Carbonate(PC)[J]. J Power Sources, 2012,205:439-448. | [20] | Li S Y, Zhao W, Cui X L, et al. An Improved Method for Synthesis of Lithium Difluoro(oxalato)borate and Effects of Sulfolane on the Electrochemical Performances of Lithium-Ion Batteries[J]. Electrochim Acta, 2013,91:282-292. | [21] | Liao L X, Cheng X Q, Ma Y L, et al. Fluoroethylene Carbonate as Electrolyte Additive to Improve Low Temperature Performance of LiFePO4 Electrode[J]. Electrochim Acta, 2013,87:466-472. | [22] | Wu B R, Ren Y H, Mu D B, et al. Enhanced Electrochemical Performance of LiFePO4 Cathode with the Addition of Fluoroethylene Carbonate in Electrolyte[J]. J Solid State Electrochem, 2013,17:811-816. | [23] | Liao L X, Fang T, Zhou X G, et al. Enhancement of Low-Temperature Performance of LiFePO4 Electrode by Butyl Sultone as Electrolyte Additive[J]. Solid State Ionics, 2014,254:27-31. | [24] | Wu X L, Guo Y G, Su J, et al. Carbon-Nanotube-Decorated Nano-LiFePO4@C Cathode Material with Superior High-Rate and Low-Temperature Performances for Lithium-Ion Batteries[J]. Adv Energy Mater, 2013,3(9):1155-1160. | [24] | Yao J W, Wu F, Qiu X P, et al. Effect of CeO2-Coating on the Electrochemical Performances of LiFePO4/C Cathode Material[J]. Electrochim Acta, 2011,56:5587-5592. | [25] | Jin Y, Yang C P, Rui X H, et al. V2O3 Modified LiFePO4/C Composite with Improved Electrochemical Performance[J]. J Power Sources, 2011,196(13):5623-5630. | [26] | Lin Y B, Lin Y, Zhou T, et al. Enhanced Electrochemical Performances of LiFePO4/C by Surface Modification with Sn Nanoparticles[J]. J Power Sources, 2013,226:20-26. | [27] | Tang H, Tan L, Xu J. Synthesis and Characterization of LiFePO4 Coating with Aluminum Doped Zinc Oxide[J]. Trans Nonferrous Met Soc China, 2013,23(2):451-455. | [28] | Zhang H, Xu Y L, Zhao C J, et al. Effects of Carbon Coating and Metal Ions Doping on Low Temperature Electrochemical Properties of LiFePO4 Cathode Material[J]. Electrochim Acta, 2012,83:341-347. | [29] | Huang Y G, Xu Y L, Yang X. Enhanced Electrochemical Performances of LiFePO4/C by Co-doping with Magnesium and Fluorine[J]. Electrochim Acta, 2013,113:156-163. | [30] | Wang W, Qiao Y Q, He L, et al. Study on LiFe1-xSmxPO4/C Used as Cathode Materials for Lithium-Ion Batteries with Low Sm Component[J]. Ionics, 2015,21(8):2119-2125. | [31] | Cai G L, Guo R S, Liu L, et al. Enhanced Low Temperature Electrochemical Performances of LiFePO4/C by Surface Modification with Ti3SiC2[J]. J Power Sources, 2015,288:136-144. | [32] | Ma Z P, Shao G J, Wang X, et al. Li3V2(PO4)3 Modified LiFePO4/C Cathode Materials with Improved High-Rate and Low-Temperature Properties[J]. Ionics, 2013,19(13):1861-1866. |
|