[1] | Sedó J,Saiz-Poseu J,Busqué F,et al. Catechol-based Biomimetic Functional Materials[J]. Adv Mater,2013,25(5):653-701. | [2] | Burzio L A,Waite J H.Cross-linking in Adhesive Quinoproteins:Studies with Model Decapeptides[J]. Biochemistry,2000,39(36):11147-11153. | [3] | van der Leeden M C. Are Conformational Changes, Induced by Osmotic Pressure Variations, the Underlying Mechanism of Controlling the Adhesive Activity of Mussel Adhesive Proteins?[J]. Langmuir,2005,21(24):11373-11379. | [4] | Yang J,Cohen Stuart M A,Kamperman M. Jack of All Trades:Versatile Catechol Crosslinking Mechanisms[J]. Chem Soc Rev,2014,43(24):8271-8298. | [5] | Lu Q,Danner E,Waite J H,et al. Adhesion of Mussel Foot Proteins to Different Substrate Surfaces[J]. J R Soc Interface,2013,10(79):20120759-20120759. | [6] | Zhang C,Gong L,Xiang L,et al. Deposition and Adhesion of Polydopamine on Surfaces of Varying Wettability[J]. ACS Appl Mater Interfaces,2017,9(36):30943-30950. | [7] | Zhao P C,Wei K C,Feng Q,et al. Mussel-Mimetic Hydrogels with Defined Cross-linkers Achieved via Controlled Catechol Dimerization Exhibiting Tough Adhesion for Wet Biological Tissues[J]. Chem Commun,2017,53(88):12000-12003. | [8] | Hofman A H,Van I H,Yang J,et al. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox[J]. Adv Mater,2018,30(19):1704640-1704678. | [9] | Liebscher J,Mrówczyński R,Scheidt H A,et al. Structure of Polydopamine:A Never-Ending Story?[J]. Langmuir,2013,29(33):10539-10548. | [10] | Batul R,Tamanna T,Khaliq A,et al. Recent Progress in the Biomedical Applications of Polydopamine Nanostructures[J]. Biomater Sci,2017,5(7): 1204-1229. | [11] | Liu Y,Ai K,Lu L.Polydopamine and Its Derivative Materials:Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields[J]. Chem Rev,2014,114(9):5057-5115. | [12] | Ryu J H,Messersmith P B,Lee H.Polydopamine Surface Chemistry:A Decade of Discovery[J]. ACS Appl Mater Interfaces,2018,10(9): 7523-7540. | [13] | Schlaich C,Wei Q,Haag R.Mussel-Inspired Polyglycerol Coatings with Controlled Wettability:From Superhydrophilic Towards Superhydrophobic Surface Coatings[J]. Langmuir,2017,33(38):9508-9520. | [14] | Orishchin N,Crane C C,Brownell M,et al. Rapid Deposition of Uniform Polydopamine Coatings on Nanoparticle Surfaces with Controllable Thickness[J]. Langmuir,2017,33(24):6046-6053. | [15] | Kan B,Zhang Q,Li M,et al. Solution-Processed Organic Solar Cells Based on Dialkylthiol-substituted Benzodithiophene Unit with Efficiency near 10%[J]. J Am Chem Soc,2014,136(44):15529-15532. | [16] | Lynge M E,Philipp S,Brigitte S D.Recent Developments in Poly(dopamine)-Based Coatings for Biomedical Applications[J]. Nanomedicine,2015,10(17):2725-2742. | [17] | Wang X,Wang C,Wang X,et al. A Polydopamine Nanoparticle Knotted Poly(ethylene glycol) Hydrogel for On-Demand Drug Delivery and Chemo-photothermal Therapy[J]. Chem Mater,2017,29(3):1370-1376. | [18] | Mrówczyński R.Polydopamine-based Multifunctional(Nano)materials for Cancer Therapy[J]. ACS Appl Mater Interfaces,2017,10(9):7541-7561. | [19] | Lin X,Ma W,Wu H,et al. Superhydrophobic Magnetic Poly(DOPAm-co-PFOEA)/Fe3O4/Cellulose Microspheres for Stable Liquid Marbles[J]. Chem Commun,2016,52(9):1895-1898. | [20] | Zhang H,Zhao T,Newland B,et al. Catechol Functionalized Hyperbranched Polymers as Biomedical Materials[J]. Prog Polym Sci,2018,78(2):47-55. | [21] | Liu Y,Ai K,Liu J,et al. Dopamine-Melanin Colloidal Nanospheres:An Efficient Near-infrared Photothermal Therapeutic Agent for in Vivo Cancer Therapy[J]. Adv Mater,2013,25(9):1353-1359. | [22] | Liu S,Pan J,Liu J,et al. Dynamically PEGylated and Borate-Coordination-Polymer-Coated Polydopamine Nanoparticles for Synergetic Tumor-Targeted, Chemo-photothermal Combination Therapy[J]. Small,2018,14(13):1703968-1703980. |
|