Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (11): 1489-1499.DOI: 10.19894/j.issn.1000-0518.250031
• Full Papers • Previous Articles Next Articles
Xiao-Ming XIE1(
), Jia-He LIU1, Ze-Hao MA1, Yu-Lian JIANG1, Xing-Yu XU1, Zhi-Yuan MA3, Wen LI2(
)
Received:2025-01-16
Accepted:2025-08-25
Published:2025-11-01
Online:2025-12-05
Contact:
Xiao-Ming XIE,Wen LI
About author:wenli@jlu.edu.cnSupported by:CLC Number:
Xiao-Ming XIE, Jia-He LIU, Ze-Hao MA, Yu-Lian JIANG, Xing-Yu XU, Zhi-Yuan MA, Wen LI. Preparation and Characterization of Solvent-Free Adhesive Based on Phenylalanine[J]. Chinese Journal of Applied Chemistry, 2025, 42(11): 1489-1499.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.250031
Fig.2 (A) FT-IR spectra of PNSA, Phe and CA; (B) PXRD patterns of PNSA, Phe and CA; (C) 1H NMR spectra of PNSA, Phe and CA; (D) 13C NMR spectra of PNSA, Phe and CA; (E) SEM and corresponding elemental mapping images of PNSA adhesive; (F) Photographs of the weights bonded by PNSA adhesive and the PNSA adhesive obtained in kilogram scale
Fig.3 (A) Adhering various substrates: wood, ceramic, glass, plastic, SS, carnelian (scale bar: 1 cm); (B) The force vs displacement curves of different substrates adhered by the PNSA adhesive; (C) Adhesion strengths of PNSA adhesive on various substrates; (D) Cyclic adhesion strengths of PNSA adhesive on Al substrate; (E) Adhesion strengths of PNSA adhesive tolerating a mass of ~1 kg on Al substrate before and after 15 days
Fig.4 (A) Images of transfusing the PNSA adhesive into different shapes of glass tubes (scale bar: 1 cm); (B) Images of repairing a fractured “Monkey” statue by PNSA adhesive (scale bar: 1 cm); (C) Frequency sweep analysis at a constant strain of 1%; (D) Strain sweep at the frequency of 5 rad/s; (E) Dynamic rheology behavior over time (γ=1%) after PNSA adhesive is broken by applying a 100% strain amplitude sweep; (F) Viscosity versus shear rate for PNSA adhesive
Fig.5 (A) Adhesion strengths of PNSA adhesive with different mass ratios; (B) Adhesion strengths of PNSA, VNSA and GNSA adhesives; (C) Adhesion strengths of PNSA1, VNSA1 and GNSA1 adhesives; (D) Adhesion strengths of PNSA and PNSA2 adhesives; (E) TGA curves of PNSA adhesive; (F) DSC spectra of PNSA adhesive, Phe and CA
Fig.6 (A) Macroscopic adhesion tests of PNSA adhesive in liquid nitrogen (scale bar, 1 cm); (B) Adhesion strengths of PNSA adhesive on Al substrates at various temperatures; (C) Cycling tests of the PNSA adhesive at low temperature; (D) Macroscopic adhesion behavior of PNSA adhesive on porcine skin (scale bar, 1 cm); (E) Adhesion strength of PNSA adhesive on porcine skin; (F) Hemolytic activity of the PNSA adhesive; (G) Photographs of the red blood cells incubating with PNSA adhesive, 0.9% NaCl (saline), and deionized water for 6 h (scale bar, 1 cm); (H) Confocal fluorescence microscopic images of L-929 cells (mouse fibroblasts) incubating with PNSA adhesive (2 mg/mL) for 3 days (scale bar, 50 μm)
| [1] | YANG G, GONG Z, LUO X, et al. Bonding wood with uncondensed lignins as adhesives[J]. Nature, 2023, 621(7979): 511-515. |
| [2] | DENG T, GAO D, SONG X, et al. A natural biological adhesive from snail mucus for wound repair[J]. Nat Commun, 2023, 14(1): 396. |
| [3] | NAM S, MOONEY D. Polymeric tissue adhesives[J]. Chem Rev, 2021, 121(18): 11336-11384. |
| [4] | XIE X, JIANG Y, YAO X, et al. A solvent-free processed low-temperature tolerant adhesive[J]. Nat Commun, 2024, 15(1): 5017. |
| [5] | YAO G, LI F, DONG S. Solvent-free bulk soft material with low-temperature tolerance: transparency, flexibility, stretchability, and adhesion[J]. Chem Eng Sci, 2023, 281(5): 119164. |
| [6] | LIU L, WEI M, LI H, et al. Polyvinyl alcohol solvent-free adhesives for biomass bonding via rapid water activation and heat treatment[J]. Green Chem, 2024, 26(24): 11873-11884. |
| [7] | YIN L, CHOLEWINSKI A, ZHAO B. Solvent-free urethane-based prepolymer as a versatile underwater adhesive material[J]. Chem Eng J, 2024, 481: 148487. |
| [8] | WU S, CAI C, LI F, et al. Deep eutectic supramolecular polymers: bulk supramolecular materials[J]. Angew Chem Int Ed, 2020, 59(29): 11871-11875. |
| [9] | LI W, BOUZIDI L, NARINE S. Current research and development status and prospect of hot-melt adhesives: a review[J]. Ind Eng Chem Res, 2008, 47(20): 7524-7532. |
| [10] | MARQUE E A S, DA SLIVA L F M, BANEA M D, et al. Adhesive joints for low- and high-temperature use: an overview[J]. The J Adhesion, 2015, 91(7): 556-585. |
| [11] | BEHNOOD A, MODIRI G. Morphology, rheology, and physical properties of polymer-modified asphalt binders[J]. Eur Polym J, 2019, 112: 766-791. |
| [12] | PARK S, JU H, PARK S, et al. New possibilities in polymer binder jetting additive manufacturing via infiltration and warm isostatic pressing[J]. Mater Des, 2023, 231: 112045. |
| [13] | ZHANG J, WANG W, ZHANG Y, et al. Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction[J]. Nat Commun, 2022, 13(1): 5214. |
| [14] | LIANG Y, WANG K, LI J, et al. Low-molecular-weight supramolecular adhesives based on non-covalent self-assembly of a small molecular gelator[J]. Mater Horiz, 2022, 9(6): 1700. |
| [15] | WANG Y, LIU G, ZHAO J, et al. Mechanically interlocked [an] daisy chain adhesives with simultaneously enhanced interfacial adhesion and cohesion[J]. Angew Chem Int Ed, 2024, 63(42): e202409705. |
| [16] | SUN P, LI Y, QIN B, et al. Super strong and multi-reusable supramolecular epoxy hot melt adhesives[J]. ACS Mater Lett, 2021, 3(7): 1003-1009. |
| [17] | BEDNARCZYK P, MOZELEWSKA K, CZECH Z. Influence of the UV crosslinking method on the properties of acrylic adhesive[J]. Int J Adhes, 2020, 102: 102652. |
| [18] | ZHANG Q, DENG Y, SHI C, et al. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides)[J]. Matter, 2021, 4(4): 1352-1364. |
| [19] | MU C, DU Z, LI W. Taming of heteropoly acids into adhesive electrodes using amino acids for the development of flexible two-dimensional supercapacitors[J]. Polyoxometalates, 2024, 3(3): 9140062. |
| [20] | XU J, LI X, LI J, et al. Wet and functional adhesives from one-step aqueous self-assembly of natural amino acids and polyoxometalates[J]. Angew Chem Int Ed, 2017, 56(30): 8731 -8735. |
| [21] | LI X, DU Z, SONG Z, et al. Bringing heteropolyacid based underwater adhesive as printable cathode coating for self-powered electrochromic aqueous batteries[J]. Adv Funct Mater, 2018, 28(23): 1800599. |
| [22] | HU Y, LIANG P, WANG Z, et al. Developing amino acid-citric acid-based deep eutectic solvent for food applications: preparation, characterization, antibacterial activity, biosafety, and formation mechanism exploration[J]. Sustainable Chem Pharm, 2023, 36: 101317. |
| [23] | XIE X, MENG F, ZHANG Z, et al. Self-assembled peptide-based nanoblocks for drug delivery[J]. New J Chem, 2023, 47(40): 18721-18728. |
| [24] | CHEN C, YANG X, LI S, et al. Tannic acid-thioctic acid hydrogel: a novel injectable supramolecular adhesive gel for wound healing[J]. Green Chem, 2021, 23(4): 1794-1804. |
| [25] | XIE X, XU X, JIANG Y. Hydrogen-bonding interaction-driven catechin assembly into solvent-free supramolecular adhesive with antidrying and antifreezing properties[J]. ACS Appl Polym Mater, 2022, 4(6): 4319-4328. |
| [26] | 解晓明, 张嘉琦. 氢键作用驱动原花青素构筑水基抗菌黏合剂[J]. 应用化学, 2022, 39(10): 1533-1542 |
| XIE X M, ZHANG J Q. Hydrogen bond interaction driven procyanidine assembly into underwater adhesive with antibacterial activity[J]. Chin J Appl Chem, 2022, 39(10): 1533-1542. | |
| [27] | LAI J, HUANG S, WU S, et al. Adhesion behaviour of bulk supramolecular polymers via pillar[5]arene-based molecular recognition[J]. Chem Commun, 2021, 57(98): 13317-13320. |
| [28] | MA C, SUN J, LI B, et al. Ultra-strong bio-glue from genetically engineered polypeptides[J]. Nat Commun, 2021, 12(1): 3613. |
| [29] | WANG Z, GU X, LI B, et al. Molecularly engineered protein glues with superior adhesion performance[J]. Adv Mater, 2022, 34(41): 2204590. |
| [30] | CHEN S, SHEN B, ZHANG F, et al. Mussel-inspired graphene film with enhanced durability as a macroscale solid lubricant[J]. ACS Appl Mater Interfaces, 2019, 11(34): 31386-31392. |
| [31] | LI J, EJIMA H, YOSHIE N. Seawater-assisted self-healing of catechol polymers via hydrogen bonding and coordination interactions[J]. ACS Appl Mater Interfaces, 2016, 8(29): 19047-19053. |
| [32] | DENG X, TANG J, GUAN W, et al. Strong dynamic interfacial adhesion by polymeric ionic liquids under extreme conditions[J]. ACS Nano, 2022, 16(4): 5303-5315. |
| [33] | LIU X, MA Z, NIE J, et al. Exploiting redox-complementary peptide/polyoxometalate coacervates for spontaneously curing into antimicrobial adhesives[J]. Biomacromolecules, 2022, 23(3): 1009-1019. |
| [34] | WAMG X, LIU X, MA Z, et al. Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids[J]. Soft Matter, 2021, 17(44): 10140-10148. |
| [35] | CHEM J, DONG Z, LI M, et al. Ultra-strong and proton conductive aqua-based adhesives from facile blending of polyvinyl alcohol and tungsten oxide clusters[J]. Adv Funct Mater, 2022, 32(33): 2111892. |
| [36] | GUO H, ZENG M, LI X, et al. Multifunctional enhancement of proton-conductive, stretchable, and adhesive performance in hybrid polymer electrolytes by polyoxometalate nanoclusters[J]. ACS Appl Mater Interfaces, 2021, 13(25): 30039-30050. |
| [37] | SALIHU R, ABD RAZAK S I, AHMAD N, et al. Citric acid: a green cross-linker of biomaterials for biomedical applications[J]. Eur Polym J, 2021, 146, 110271. |
| [38] | PRESTI M, RIZZO G, FARINOLA G, et al. Bioinspired biomaterial composite for all-water-based high-performance adhesives[J]. Adv Sci, 2021, 8(16): 2004786. |
| [39] | LIU X, JIANG Q, YIN Y, et al. Phe-phe-based macroscopic supramolecular hydrogel construction strategies and biomedical applications[J]. Chem Bio Eng, 2024, 1(8): 664-677. |
| [40] | KE X, TANG S, DONG Z, et al. An instant, repeatable and universal supramolecular adhesive based on natural small molecules for dry/wet environments[J]. Chem Eng J, 2022, 442(15): 136206. |
| [41] | MA Z, LIU X, NIE J, et al. Nano-antimicrobial peptides based on constitutional isomerism-dictated self-assembly[J]. Biomacromolecules, 2022, 23(3): 1302-1313. |
| [1] | Wen-Qiang MAO, Jia-Peng LI, Dong-Dong WANG, Yan-Xiong PAN, Xiang-Ling JI, Wei JIANG. Preparation and Properties of Chlorinated Poly(Propylene Carbonate)/ Poly(Butylene Succinate) Blends Modified with Epoxy Chain Extender ADR-4468 [J]. Chinese Journal of Applied Chemistry, 2025, 42(2): 201-211. |
| [2] | Jia-Hui LIU, Bai-Chao AN, Qiu-Yan YAN, Shi-Fang LUAN. Preparation and Properties of Mussel-Inspired Antibacterial Bone Adhesive [J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1258-1266. |
| [3] | Jia-Cheng ZHOU, Dong-Dong WANG, Yun-Bao GAO, Jing JIN, Wei JIANG. Rheological Properties and Bonding Properties of Modified Poly(Propylene Carbonate) Pressure-sensitive Adhesive [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 871-878. |
| [4] | Bi-Ru SHI, Hao-Hao WU, Hao-Pu XIE, Xin-Xin TIAN, Ying-Lu SUN, Xiang-Dong LIU, Yu-Ming YANG. Preparation and Properties of Self-healing Polyurethane Adhesives with Diels-Alder Bonds [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 277-287. |
| [5] | Feng-Shuo LIU, Qian DONG, Zhong-Fu ZHAO, Wei LIU, Chun-Qing ZHANG. Structure and Performance Modulation of Self‑Adhesive SIS/C5 Electrospun Membranes for Transdermal Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1523-1532. |
| [6] | Xiao-Ming XIE, Jia-Qi ZHANG. Hydrogen Bond Interaction Driven Procyanidine Assembly into Underwater Adhesive with Antibacterial Activity [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1533-1542. |
| [7] | WU Zhi-Qiang, HAN Xin-Ning, LIU Yang, WANG Gang, ZHAN Hai-Juan, LIU Wan-Yi. Research Progress on Synthesis of Bis(indolyl)methanes under Aqueous or Solvent-free Catalysis [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 881-896. |
| [8] | XU Bing, WU Zhongkui, MIAO Linhui, WANG Zhenkun, DAI Siyu, ZHU Zhe. Properties of Acrylate Pressure Sensitive Adhesive [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 778-784. |
| [9] | SUN Liping, XIA Ran. Synthesis of α-Adenine Arabinoside under Solvent-and Catalyst-Free Conditions [J]. Chinese Journal of Applied Chemistry, 2019, 36(3): 300-305. |
| [10] | WANG Wenxu,HUANG Bingyu,TAN Licheng,HAN Jihui,CHEN Lie,XU Haitao,CHEN Yiwang. Research Progress of Addition Type Liquid Silicone Rubber [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1005-1012. |
| [11] | TANG Zuwu,LU Shengchang,LIN Xinxing,WU Hui,HUANG Liulian,CHEN Lihui. Research Progress on Catechol-Containing Polymers [J]. Chinese Journal of Applied Chemistry, 2018, 35(12): 1399-1410. |
| [12] | LIU Jianjian, CHENG Hui, LIN Faquan, LUO Xuan, WANG Lisheng, LIN Cuiwu. One-pot Synthesis of L-Phenylalanine Derivatives and Their Anti/Pro-coagulational Properties [J]. Chinese Journal of Applied Chemistry, 2017, 34(2): 139-145. |
| [13] | XU Zhaohui,LIU Deyong,TU Yuanhong. Efficient Solvent-free Synthesis of Spiro Heterobicyclic Derivatives with Boric Acid as Catalyst [J]. Chinese Journal of Applied Chemistry, 2015, 32(9): 999-1004. |
| [14] | XU Zhaohui. SnO Catalyzed Solvent-Free Synthesis of Dimethyl 2-[(Indol-3-yl)-methyl]malonate Derivatives [J]. Chinese Journal of Applied Chemistry, 2015, 32(7): 759-764. |
| [15] | ZHAO Zhouxing. One-pot Synthesis of Aroyl Cyanides Under Solvent-free and Catalyst-free Conditions [J]. Chinese Journal of Applied Chemistry, 2014, 31(08): 943-946. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||