| 1 |
SHI S, LI Y, CUI Z, et al. Recent advances in degradation of the most potent industrial greenhouse gas sulfur hexafluoride[J]. Chem Eng J, 2023, 470: 144166.
|
| 2 |
XIAO S, SHI S, LI Y, et al. Review of decomposition characteristics of eco-friendly gas insulating medium for high voltage gas insulated equipment[J]. J Phys D: Appl Phys, 2021, 54(37): 373002.
|
| 3 |
ZENG F, LI H, ZHANG M, et al. Establishment of a reax force field to study SF6 gas over-thermal decomposition[J]. J Phys D: Appl Phys, 2021, 54(11): 115501.
|
| 4 |
LEE S H, PARK N K, YOON S H, et al. Catalytic decomposition of SF6 by hydrolysis and oxidation over γ-Al2O3[J]. Clean Technol, 2009, 15(4): 273-279.
|
| 5 |
ZÁMOSTNÁ L, BRAUN T. Catalytic degradation of sulfur hexafluoride by rhodium complexes[J]. Angew Chem Int Ed, 2015, 54(36): 10652-10656.
|
| 6 |
SHELDON D J, CRIMMIN M R. Complete deconstruction of SF6 by an aluminium(Ⅰ) compound[J]. Chem Commun, 2021, 57(58): 7096-7099.
|
| 7 |
ZHANG X, ZHANG G, WU Y, et al. Synergistic treatment of SF6 by dielectric barrier discharge/γ-Al2O3 catalysis[J]. AIP Adv, 2018, 8(12):125109.
|
| 8 |
LIU M. Decomposing mechanism of SF6 under positive DC partial discharge in the presence of trace H2O[J]. ACS Omega, 2020, 5(22): 13389-13395.
|
| 9 |
SHIN I H, CHOI C Y, PARK J H, et al. Characteristics of aerosol by-products generated from sulfur hexafluoride treatment using ionizing energy[J]. J Clean Prod, 2017, 159: 281-289.
|
| 10 |
SON Y S, LEE S J, CHOI C Y, et al. Decomposition of high concentration SF6 using an electron beam[J]. Radiat Phys Chem, 2016, 124: 220-224.
|
| 11 |
FARADZHEV N S, KUSMIEREK D O, YAKSHINSKIY B V, et al. Effects of electron irradiation on structure and bonding of SF6 on Ru(0001)[J]. Low Temp Phys, 2003, 29(3): 215-222.
|
| 12 |
TROE J, MILLER T M, VIGGIANO A A. Low-energy electron attachment to SF6.Ⅱ. temperature and pressure dependences of dissociative attachment[J]. J Chem Phys, 2007, 127(24): 244304.
|
| 13 |
PARK J H, SHIN I H, SEO S H, et al. The optimization of SF6 decomposition process using an electron beam[J]. Radiat Phys Chem, 2018, 151: 192-197.
|
| 14 |
VADIKKEETTIL Y, SUBRAMANIAM Y, MURUGAN R, et al. Plasma assisted decomposition and reforming of greenhouse gases: a review of current status and emerging trends[J]. Renew Sustainable Energy Rev, 2022, 161: 112343.
|
| 15 |
GANGULY B N, SCOFIELD J D, BLETZINGER P. The use of SF6 as a plasma processing gas[M]//CHRISTOPHOROU L G, OLTHOFF J K. Gaseous dielectrics IX. Boston, MA: Springer US, 2001: 95-101.
|
| 16 |
SHIH M, LEE W J, TSAI C H, et al. Decomposition of SF6 in an RF plasma environment[J]. J Air Waste Manage, 2002, 52(11): 1274-1280.
|
| 17 |
KOKKORIS G, PANAGIOTOPOULOS A, GOODYEAR A, et al. A global model for SF6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls[J]. J Phys D Appl Phys, 2009,42: 055209.
|
| 18 |
GROB R, CASANOVAS J, BESBÈS M, et al. Interactions between SF6 and water exposed to γ radiation or to partial discharges: 1984 IEEE International Conference on Eletrical Insulation[C]. Montreal: IEEE, 1984: 147-150.
|
| 19 |
HERGLI R, CASANOVAS J, DERDOUR A, et al. Study of the decomposition of SF6 in the presence of water, subjected to Gamma irradiation or corona discharges[J]. IEEE Trans Electr Insul, 1988, 23(3): 451465.
|
| 20 |
REY M, CHIZHMAKOVA I S, NIKITIN A V, et al. Towards a complete elucidation of the ro-vibrational band structure in the SF6 infrared spectrum from full quantum-mechanical calculations[J]. Phys Chem Chem Phys, 2021, 23(21): 12115-12126.
|
| 21 |
蔡涛, 王先培, 黄云光, 等. SF6气体及其衍生物的红外光谱分析[J]. 光谱学与光谱分析, 2010, 30(11): 2967-2970.
|
|
CAI T, WANG X P, HUANG Y G, et al. Infrared spectrum analysis of SF6 and SF6 decomposition[J]. Spectrosc Spect Anal, 2010, 30: 2967-2970.
|
| 22 |
RAFFAEL K D, SMITH D M. Infrared spectroscopy of the Ν1 band of sulfur tetrafluoride, SF4[J]. J Mol Spectrosc, 2002, 214(1): 21-27.
|
| 23 |
HEISE H M, KURTE R, FISCHER P, et al. Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment[J]. Fresenius J Anal Chem, 1997, 358(7/8): 793-799.
|
| 24 |
NGOHANG F E, FONTAINE G, GAY L, et al. Revisited investigation of fire behavior of ethylene vinyl acetate/aluminum trihydroxide using a combination of mass loss cone, fourier transform infrared spectroscopy and electrical low pressure impactor[J]. Polym Degrad Stab, 2014, 106: 26-35.
|