
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (4): 480-489.DOI: 10.19894/j.issn.1000-0518.240399
• Full Papers • Previous Articles Next Articles
Ri-Hui ZHANG1,2, Ting-Yun JIA1,2, Long YUAN3,4, Xi CHANG3, Xiao-Tian YANG1,2,3(), Ping WANG1,2,3,5(
)
Received:
2024-12-09
Accepted:
2025-03-03
Published:
2025-04-01
Online:
2025-05-14
Contact:
Xiao-Tian YANG,Ping WANG
Supported by:
CLC Number:
Ri-Hui ZHANG, Ting-Yun JIA, Long YUAN, Xi CHANG, Xiao-Tian YANG, Ping WANG. Indium-Doped Porous Carbon Nitride for Efficient Visible-Light-Driven Hydrogen Peroxide Synthesis[J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 480-489.
Fig.1 (A) Schematic diagram of the synthesis route of In x -g-C3N4; (B) SEM image of In10 mg-g-C3N4, scale bar=1 μm; (C) TEM image of In10 mg-g-C3N4, scale bar=200 nm; (D) EDS image of In10 mg-g-C3N4, scale bar=1 μm
Fig.2 (A) XRD patterns of g-C3N4, In2 mg-g-C3N4, In5 mg-g-C3N4, and In10 mg-g-C3N4; (B) FT-IR spectra of g-C3N4 and different In-doped samples; (C) C1s XPS spectra of g-C3N4 and In10 mg-g-C3N4; (D) N1s XPS spectra; (E) In3d XPS spectra of In10 mg-g-C3N4
Fig.4 (A) H2O2 generation time curves for different CN photocatalysts. Experimental conditions: visible light irradiation (λ≥420 nm), p(O2)=1.0325×105 Pa, T=303 K; (B) H2O2 generation cycling performance of In10 mg-g-C3N4; (C) Comparison of photocatalyst performance under different conditions (O2 saturation, air saturation, no IPA, dark state, and no catalyst); (D) Photocatalytic H2O2 generation performance under O2 saturation, argon atmosphere, and in the presence of p-BQ as a scavenger
1 | CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J, et al. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process[J]. Angew Chem Int Ed, 2006, 45(42): 6962-6984. |
2 | FUKUZUMI S Y, YAMADA Y, KARLIN K D. Electrochim hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell[J]. Electrochim Acta, 2012, 82: 493-511. |
3 | KOFUJI Y, ISOBE Y, SHIRAISHI Y, et al. Hydrogen peroxide production on a carbon nitride-boron nitride-reduced graphene oxide hybrid photocatalyst under visible light[J]. ChemCatChem, 2016, 138: 10019-10025. |
4 | HU H L, ZENG X K, ZHANG X W. Production of hydrogen peroxide by photocatalytic processes[J]. Angew Chem Int Ed, 2020, 59: 17356-17376. |
5 | TENG Z Y, ZHANG Q T, YANG H B, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide[J], Nat Catal, 2021, 4: 374-384. |
6 | CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process[J]. Angew Chem Int Ed, 2006, 45: 6962-6984. |
7 | TAN H, ZHOU P, LIU M X, et al. Photocatalysis of water into hydrogen peroxide over an atomic Ga-N5 site[J]. Nat Synthesis, 2023, 2: 557-563. |
8 | YANG S. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis[J]. ACS Catal, 2018, 8: 4064-4081. |
9 | SANTOS G O S, CORDEIRO-JUNIOR P J M, SOUTM R S, et al. Recent advances in H2O2 electrosynthesis based on the application of gas diffusion electrodes: challenges and opportunities[J]. Environ Electrochem, 2022, 36: 101124. |
10 | ZHAN W, JI L, WANG X, et al. A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant[J]. Tetrahedron, 2018, 74: 1527-1532. |
11 | KSIBI M. Chemical oxidation with hydrogen peroxide for domestic wastewater treatment[J]. Chem Eng J, 2006, 119: 161-165. |
12 | CHEN Z, YAO D, CHU C C, et al. Photocatalytic H₂O₂ production systems: design strategies and environmental applications[J]. Chem Eng J, 2023, 451: 138489. |
13 | HOU H, ZENG X, ZHANG X. Production of hydrogen peroxide by photocatalytic processes[J]. Angew Chem Int Ed, 2020, 59: 17356-17376. |
14 | FUKUZUMI S. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells[J]. BBA-Bioenergetics, 2016, 1857(5): 604-611. |
15 | KOFUJI Y, ISOBE Y, SHIRAISHI Y, et al. Carbon nitride-aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency[J]. J Am Chem Soc, 2016, 138(31): 10019-10025. |
16 | WEI Z, LIU M L, ZHANG Z J, et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers[J]. Energy Environ Sci, 2018, 11: 2581-2589. |
17 | YU S, CHENG X, WANG Y S, et al. High activity and selectivity of single palladium atom for oxygen hydrogenation to H₂O₂[J]. Nat Commun, 2022, 13: 4737. |
18 | GUO Q, ZHOU C Y, MA Z B, et al. Elementary photocatalytic chemistry on TiO2 surfaces[J]. Chem Soc Rev, 2016, 45: 3701-3730. |
19 | LIM J, KIM H, PARK J, et al. How g-C3N4 works and is different from TiO2 as an environmental photocatalyst: mechanistic view[J]. Environ Sci Technol, 2020, 54: 497-506. |
20 | TORRES-PINTO A, SAMPAIO M J, SILVA C G, et al. Recent strategies for hydrogen peroxide production by metal-free carbon nitride photocatalysts[J]. Catal, 2019, 9(12): 990. |
21 | YAN B, CHEN Z, XU Y. Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production[J]. Chem-Asian J, 2020, 15(15): 2329-2340. |
22 | HAIDER Z, CHO H, MOON G, et al. Minireview: selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts[J]. Catal, 2019, 335(1): 55-64. |
23 | CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv Mater, 2015, 27: 2150-2176. |
24 | WU Q, CAO J, WANG X, et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater[J]. Nat Commun, 2021, 12(1): 483. |
25 | CHEN L, WANG Y, CHENG S, et al. Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution[J]. Appl Catal B-Environ, 2022, 303: 120932. |
26 | ISAKA Y, KAWASE Y, KUWAHARA Y, et al. Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide[J]. Angew Chem Int Ed, 2019, 58(16): 5402-5406. |
27 | ZHANG H, ZHAO L, GENG F, et al. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation[J]. Appl Catal B-Environ, 2016, 180: 656-662. |
28 | ZHOU P, MENG X, LI L, et al. Co-doped g-C3N4 isotype heterojunction composites for high-efficiency photocatalytic H2 evolution[J]. J Alloy Compd, 2020, 827: 154259. |
29 | ZHANG X, MA P J, WANG C, et al. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution[J]. Energy Environ Sci, 2022, 15: 830. |
30 | YU H J, SHI R, ZHAO Y X, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Adv Mater, 2017, 29(16): 1605148. |
31 | WANG Y, DU P P, PAN H Z, et al. Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis[J]. Adv Mater, 2019, 31(40): 1807540. |
32 | LI R J, BA K K, ZHANG D, et al. Unraveling the synergistic mechanism of boosted photocatalytic H2O2 production over cyano-g-C3N4/In2S3/Ppy heterostructure and enhanced photocatalysis-self-fenton degradation performance[J]. Small, 2024, 20(22): 2308568. |
33 | ZHAO Y B, ZHANG P, YANG Z C, et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride[J]. Nat Commun, 2020, 12: 3701. |
34 | LI R J, ZHENG M, ZHOU X, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide[J]. Chem Eng J, 2023, 464(15): 142584. |
35 | CAO S, LI H, TONG T, et al. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution[J]. Adv Funct Mater, 2018, 28(32): 1802169. |
36 | LI Y X, WANG S Y, HE Y, et al. Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction[J]. J Am Chem Soc, 2020, 142(45): 19259-19267. |
37 | CAO S, LI H, TONG T, et al. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution[J]. Adv Funct Mater,2018, 28(32): 1802169. |
38 | WEI Z, LIU M L, ZHANG Z J, et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers[J]. Energy Environ Sci, 2018, 11: 2581-2589. |
39 | KOFUJI Y, ISOBE Y, SHIRAISHI Y, et al. Carbon nitride-aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency[J]. J Am Chem Soc, 2016, 138(31): 10019-10025. |
40 | SHIRAISHI Y, KANAZAWA S, KOFUJI Y, et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts[J]. Angew Chem Int Ed, 2014, 53(49): 13454-13459. |
41 | BEREZIN M Y, ACHILEFU S. Fluorescence lifetime measurements and biological imaging[J]. Chem Rev, 2010, 110(5): 2641-2684. |
42 | ZHOU P, CHEN H, CHAO Y, et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production[J]. Nat Commun, 2021, 12: 1-8. |
43 | YU S M, CHENG X, WANG Y S, et al. High activity and selectivity of single palla-dium atom for oxygen hydrogenationto H2O2[J]. Nat Commun, 2022, 13: 4737. |
44 | LUO Y, ZHANG B P, LIU C C, et al. Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction[J]. Angew Chem Int Ed, 2023, 62(26): e202305355. |
45 | HOU H, ZENG X, ZHANG X. Production of hydrogen peroxide by photocatalytic processes[J]. Angew Chem Int Ed, 2020, 59(40): 17356-17376. |
46 | WU G, HU S, HAN Z, et al. The effect of Ni(i)-N active sites on the photocatalytic H2O2 production ability over nickel doped graphitic carbon nitride nanofibers[J]. New J Chem, 2017, 41(24): 15289-15297. |
47 | WENG Z, LIN Y F, ZHANG X F, et al. Site engineering of covalent organic frameworks for regulating peroxymonosulfate activation to generate singlet oxygen with 100% selectivity[J]. Angew Chem Int Ed, 2023, 62(43): e202310934. |
[1] | Nian JIN, Chun-Li GAO, Quan-Qian GE, Mai XU, Xian LIANG, Chuan-Gao ZHU, Feng-Wu WANG. Research Progress on the Construction of Defective Titanium Dioxide and Its Application in Photocatalysis/Photoelectrocatalysis [J]. Chinese Journal of Applied Chemistry, 2025, 42(2): 149-167. |
[2] | Zhen-jian JIA, Xi HAN, Jie ZHANG. Preparation and Photocatalytic Performance of Ruthenium Dioxide/Titanium Dioxide Composite Catalyst [J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1324-1332. |
[3] | Ying-Wei LI, Ji HAN, Bu-Yuan GUAN. Research Progress on the Synthesis and Application of Two-Dimensional Mesoporous Materials [J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 767-782. |
[4] | Bing-Jie WAN, Xiao-Xue LIU, Lin-Guang QI, Chang-Chao JIA, Jian LIU. Research Progress of TiO2-Based Photocatalytic CO2 Reduction [J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 637-658. |
[5] | Na YIN, Ying-Hui WANG, Hong-Jie ZHANG. Applications of Rare Earth-Based Nanoparticles in Brain Tumors [J]. Chinese Journal of Applied Chemistry, 2024, 41(3): 309-327. |
[6] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[7] | Bo XIONG, Tai-Hua LI, Wu-Ping ZHOU, Chang-Yu LIU, Xiao-Long XU. Preparation of Cu2O/CuO-g-C3N4 Adsorbent by One-step Thermal Polymerization and Adsorption Properties for Methyl Orange [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 420-429. |
[8] | Guo-Qing CAI, Jing-Ru DONG, Jun-Ming MO. Green Synthesis and Antibacterial Activity of N‑Benzyl Sulfoximines [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1693-1699. |
[9] | Feng WEI, Hai-Dong XING, Zi-Yuan XIU, De-Feng XING, Xiao-Jun HAN. Fabrication of BiOX-Based Photocatalysts and Their Applications in Energy Conversion [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1518-1530. |
[10] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[11] | Jia-He WANG, Da-Yong LIU, Wei LIU, Lin WANG, Biao DONG. Research Progress on Photocatalytic Antibacterial Application of TiO2 Nano Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 629-646. |
[12] | Hui DU, Chen-Yang YAO, Hao PENG, Bo JIANG, Shun-Xiang LI, Jun-Lie YAO, Fang ZHENG, Fang YANG, Ai-Guo WU. Applications of Transition Metal⁃doped Iron⁃based Nanoparticles in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 391-406. |
[13] | Hui LU, Jiang LI, Li-Hua WANG, Ying ZHU, Jing CHEN. Researsh Progress of Photocatalytic Applications of Atomically Precise Coinage Metal Nanoclusters [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1652-1664. |
[14] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[15] | Ying-Zi LI, Ting LIU, Si-Qi WU, Xuan FANG, Jing GAO, Shi TANG. Metallaphotoredox⁃Catalyzed O⁃Arylation of Serine [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1610-1616. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||