
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (3): 375-385.DOI: 10.19894/j.issn.1000-0518.240393
• Full Papers • Previous Articles Next Articles
Feng WU1,2, Ying-Hui WANG1(), Hong-Jie ZHANG1,2,3(
)
Received:
2024-11-30
Accepted:
2025-01-23
Published:
2025-03-01
Online:
2025-04-11
Contact:
Ying-Hui WANG,Hong-Jie ZHANG
About author:
hongjie@ciac.ac.cnSupported by:
CLC Number:
Feng WU, Ying-Hui WANG, Hong-Jie ZHANG. Tumor Microenvironment Responsive Degradable Smart Nanomedicine for Photodynamic/Photothermal/Gas Combination Therapy[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 375-385.
Fig.2 (A) XRD patterns of ZIF@IN@HA and ZIF-8; (B) UV-Vis spectra of free ICG, HA, Nic, ZIF-8 and ZIF@IN@HA; (C) The average hydrated particle size of ZIF@I, ZIF@IN and ZIF@IN@HA; (D) Zeta potentials of ZIF-8, ZIF@I, ZIF@IN and ZIF@IN@HA
Fig.3 (A) ICG release curve of ZIF@IN@HA in PBS solution with different pH; (B) Photothermal temperature rising curves of ZIF@IN@HA with different concentrations; (C) Degradation curve of DPBF of ZIF@IN@HA aqueous solution over time with or without 808 nm laser irradiation; (D) NO release curve of ZIF@IN buffer solution with or without GSH
Fig.4 (A) Biocompatibility experiments of ZIF@IN@HA at different mass concentrations; (B) Cytotoxicity of ZIF@IN@HA at different mass concentrations with 808 nm laser irradiation or not
1 | FREDDIE B, MATHIEU L, HYUNA S, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer J Clin, 2024, 74: 229-263. |
2 | JUN J M, GEETHA G P, CARLOS J A, et al. Integrative oncology: addressing the global challenges of cancer prevention and treatment[J]. CA: A Cancer J Clin, 2022, 72: 144-164. |
3 | FENG T, TANG Z X, SHEN J C, et al. Exosome camouflaged coordination-assembled Iridium(Ⅲ) photosensitizers for apoptosis-autophagy-ferroptosis induced combination therapy against melanoma[J]. Biomaterials, 2023, 301: 122212. |
4 | SUN B W, RAHMAT J N B, ZHANG Y, et al. Wirelessly activated nanotherapeutics for in vivo programmable photodynamic-chemotherapy of orthotopic bladder cancer[J]. Adv Sci, 2022, 9(16): 2200731. |
5 | WAKS A G, WINER E P. Breast cancer treatment[J]. JAMA, 2019, 321(3): 288-300. |
6 | LI X T, CHEN L, HUANG M T, et al. Innovative strategies for photodynamic therapy against hypoxic tumor[J]. Asian J Pharm Sci, 2023, 18: 100775. |
7 | GLORIEUX C, LIU S H, HUANG P, et al. Targeting ROS in cancer: rationale and strategies[J]. Nat Rev Drug Discov, 2024, 23: 583-606. |
8 | DENG H R, LI X N, PAN L F, et al. GSH-responsive liposomes with heat shock protein regulatory ability for efficient photodynamic/photothermal combined therapy of tumors[J]. ACS Appl Mater Interfaces, 2024, 16: 25788-25798. |
9 | HUANG S N, XU Z L, ZHI W W, et al. pH/GSH dual-responsive nanoparticle for auto-amplified tumor therapy of breast cancer[J]. J Nanobiotechnol, 2024, 22: 324. |
10 | MIN H, WANG J, QI Y Q, et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy[J]. Adv Mater, 2019, 31: 1808200. |
11 | LUO G H, LI Z H, CHEN M L. Three-staged tumor inhibition by mitochondria-targeted cascaded gas/mild-photothermal/photodynamic synergistic therapy[J]. Chem Eng J, 2022, 442: 136169. |
12 | HUANG X, ZHONG Y N, LI Y F, et al. Black phosphorus-synergic nitric oxide nanogasholder spatiotemporally regulates tumor microenvironments for self-amplifying immunotherapy[J]. ACS Appl Mater Interfaces, 2022, 14: 37466-37477. |
13 | XU Z C, LUO Q Z, HE Y Q, et al. Endogenous nitric oxide releases in situ for RNS/ROS synergistic cancer therapy[J]. Adv Funct Mater, 2024, 34: 2314536. |
14 | XUE D Z, CAO Y, WANG Y H, et al. An efficient reactive oxygen species/reactive nitrogen species generator for dual imaging-guided orthotopic glioblastoma therapy through intrathecal delivery[J]. Nano Today, 2023, 50: 101886. |
15 | ZHANG M S, JIN H, LIU Y, et al. L-Arginine self-delivery supramolecular nanodrug for NO gas therapy[J]. Acta Biomater, 2023, 169: 517-529. |
16 | WU D P, CHEN X Y, YAO S J, et al. Platelet membrane coated Cu9S8-SNAP for targeting NIR-Ⅱ mild photothermal enhanced chemodynamic/gas therapy of triple-negative breast cancer[J]. Small, 2024, 20: 2400919. |
17 | LU H W, LIANG B, HU A N, et al. Engineered biomimetic cancer cell membrane nanosystems trigger gas-immunometabolic therapy for spinal-metastasized tumors[J]. Adv Mater, 2024: 2412655. |
18 | CHENG Y, ZHONG W B, CHEN Y, et al. Bimetal-biligand frameworks for spatiotemporal nitric oxide-enhanced sono-immunotherapy[J]. Adv Mater, 2024: 2408242. |
19 | LUO T, WANG D, LIU L D, et al. Switching Reactive oxygen species into reactive nitrogen species by photocleaved O2-released nanoplatforms favors hypoxic tumor repression[J]. Adv Sci, 2021, 8: 2101065. |
20 | FENG L, ZHANG H X, XIE X X, et al. Cascade-activatable NO release based on GSH-detonated “nanobomb” for multi-pathways cancer therapy[J]. Mater Today Bio, 2022, 14: 100288. |
21 | ZOU J H, LI Z, ZHU Y, et al. pH/GSH dual responsive nanosystem for nitric oxide generation enhanced type I photodynamic therapy[J]. Bioact Mater, 2024, 22: 324. |
22 | YANG H Z, HU Y, CHEN J J, et al. Nitric oxide/PDT combination therapy by the fluorescent self-reporting Co-delivery platforms[J]. J Drug Deliv Sci Technol, 2024, 92: 105296. |
23 | ZHU J W, WANG W L, WANG X R, et al. Multishell nanoparticles with “linkage mechanism” for thermal responsive photodynamic and gas synergistic therapy[J]. Adv Healthc Mater, 2021, 10: 2002038. |
24 | SHI H, XIONG C F, ZHANG L J, et al. Light-triggered nitric oxide nanogenerator with high l-arginine loading for synergistic photodynamic/gas/photothermal therapy[J]. Adv Healthc Mater, 2023, 12: 2300012. |
25 | SHI X H, FU D D, WANG J M, et al. GSH-responsive prodrug-based nanodrugs for augmenting chemo-photodynamic synergistic therapy against tumors[J]. Nano Today, 2024, 57: 102368. |
26 | CHEN S L, LUO Y, HE Y, et al. In-situ-sprayed therapeutic hydrogel for oxygen-actuated Janus regulation of postsurgical tumor recurrence/metastasis and wound healing[J]. Nat Commun, 2024, 15: 814. |
27 | XIA M T, YAN Y, PU H Y, et al. Glutathione responsive nitric oxide release for enhanced photodynamic therapy by a porphyrinic MOF nanosystem[J]. Chem Eng J, 2022, 442: 136295. |
28 | SONG Y Z, HAN S, LIU S W, et al. Biodegradable imprinted polymer based on ZIF-8/DOX-HA for synergistically targeting prostate cancer cells and controlled drug release with multiple responses[J]. ACS Appl Mater Interfaces, 2023, 15: 25339-25353. |
29 | SUN W S, YANG J X, HOU M F, et al. A nano “immune-guide” recruiting lymphocytes and modulating the ratio of macrophages from different origins to enhance cancer immunotherapy[J]. Adv Funct Mater, 2021, 31: 2009116. |
30 | KIM S, LI S J, JANGID A K, et al. Surface engineering of natural killer cells with CD44-targeting ligands for augmented cancer immunotherapy[J]. Small, 2024, 20: 2306738. |
31 | GOLDSCHMIDT M, LANDZBERG B R, FRISHMAN W H. Nicorandil: a potassium channel opening drug for treatment of ischemic heart disease[J]. J Clin Pharmacol, 1996, 36(7): 559-572. |
32 | XIN Y T, YU Y J, SU M H, et al. In situ-activated photothermal nanoplatform for on-demand NO gas delivery and enhanced colorectal cancer treatment[J]. J Control Release, 2023, 359: 69-84. |
33 | MI Y Q, CHEN Y, GU G D, et al. New synthetic adriamycin-incorporated chitosan nanoparticles with enhanced antioxidant, antitumor activities and pH-sensitive drug release[J]. Carbohydr Polym, 2021, 273: 118623. |
34 | FANG L P, MENG Q, ZHANG Y, et al. π Bridge engineering-boosted dual enhancement of type-Ⅰ photodynamic and photothermal performance for mitochondria-targeting multimodal phototheranostics of tumor[J]. ACS Nano, 2023, 17: 21553-21566. |
35 | GUO H Z, LIU L S, HU Q Q, et al. Monodisperse ZIF-8@dextran nanoparticles co-loaded with hydrophilic and hydrophobic functional cargos for combined near-infrared fluorescence imaging and photothermal therapy[J]. Acta Biomater, 2022, 137: 290-304. |
36 | WEN T, LIN Z Y, ZHAO Y T, et al. Bioresponsive nanoarchitectonics-integrated microneedles for amplified chemo-photodynamic therapy against acne vulgaris[J]. ACS Appl Mater Interfaces, 2021, 13: 48433-48448. |
37 | SUN S M, HUANG X, YANG N L, et al. Fluorinated titanium oxide (TiO2- xFx) nanospindles as ultrasound-triggered pyroptosis inducers to boost sonodynamic immunotherapy[J]. ACS Nano, 2024, 18: 19756-19770. |
38 | LI Y, FAN W Z, GU X, et al. Biodegradable ferric phosphate nanocarriers with tumor-specific activation and glutathione depletion for tumor self-enhanced ferroptosis and chemotherapy[J]. Adv Funct Mater, 2024, 34: 2313540. |
[1] | Yi-Qian YANG, Xiao-Xia YAN, Hao PENG, Ai-Guo WU, Fang YANG. Advances of NIR-Ⅱ-Triggered Photodynamic Therapy in Overcoming Tumor Hypoxia Environment [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 925-936. |
[2] | Na YIN, Ying-Hui WANG, Hong-Jie ZHANG. Applications of Rare Earth-Based Nanoparticles in Brain Tumors [J]. Chinese Journal of Applied Chemistry, 2024, 41(3): 309-327. |
[3] | Shuang LIU, Si-Ying TENG, Peng HUI, Ya-Bin SUN. Research Progress on Nanozymes in the Treatment of Ophthalmic Diseases [J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1679-1696. |
[4] | Hui DU, Chen-Yang YAO, Hao PENG, Bo JIANG, Shun-Xiang LI, Jun-Lie YAO, Fang ZHENG, Fang YANG, Ai-Guo WU. Applications of Transition Metal⁃doped Iron⁃based Nanoparticles in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 391-406. |
[5] | GAO Ming, ZHAO Kaidong, LIU Xiangyong, JIN Yuanzhe. Preparation of Molybdenum Disulfide Nanoparticles and the Cytoprotection on Cardiac Myocytes [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1010-1021. |
[6] | . Preparation of Aliphatic/Aromatic Copolyesters Based on Cyclohexanedimethanol and Oligo(lactic acid) [J]. Chinese Journal of Applied Chemistry, 2009, 26(07): 766-769. |
[7] | Gan Zhihua, Jing Xiabin, Zhang Zhong wen, Xu Xingxiang. Preparation of Biodegradable Polymer Films for Prevention of Tendon Adhesion [J]. Chinese Journal of Applied Chemistry, 1997, 0(2): 84-86. |
[8] | Zhuo Renxi, Yin Chao, Wu Yinnan, Zhu Lei, Zhen Shuiqing. Synthesis and Degradation Behavior of Poly(DL-Lactide)for Ophthalmic Application [J]. Chinese Journal of Applied Chemistry, 1997, 0(2): 102-104. |
[9] | Shi Tongshun, Liu Bencai, Cao Xizhang. PREPARATION AND SPECTRAL PROPERTIES OF [T(p-NO2)PP]Fe(Ⅱ)(NO) COMPLEX [J]. Chinese Journal of Applied Chemistry, 1992, 0(2): 73-75. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||