Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (1): 79-90.DOI: 10.19894/j.issn.1000-0518.220089
• Full Papers • Previous Articles Next Articles
Jin LIN, Fang-Zhu WANG(), Ling-Ling LYU()
Received:
2022-03-23
Accepted:
2022-09-15
Published:
2023-01-01
Online:
2023-01-28
Contact:
Fang-Zhu WANG,Ling-Ling LYU
About author:
zkde2l@126.comCLC Number:
Jin LIN, Fang-Zhu WANG, Ling-Ling LYU. Preparation of Pseudo-boehamite from Industrial Materials and Its Application in Selective Hydrogenation of Isophorone[J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 79-90.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220089
Gelling temperature/℃ | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
40 | 135 | 0.15 | 4.69 |
50 | 355 | 0.73 | 6.33 |
60 | 376 | 0.80 | 6.92 |
70 | 350 | 0.69 | 5.91 |
90 | 290 | 0.53 | 5.65 |
Table 1 Effect of gelling temperature on pore structure parameters of pseudo-boehmites
Gelling temperature/℃ | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
40 | 135 | 0.15 | 4.69 |
50 | 355 | 0.73 | 6.33 |
60 | 376 | 0.80 | 6.92 |
70 | 350 | 0.69 | 5.91 |
90 | 290 | 0.53 | 5.65 |
Gelling pH | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
7~8 | 173 | 0.29 | 5.60 |
8~9 | 188 | 0.40 | 5.44 |
9~10 | 412 | 0.73 | 5.10 |
10~11 | 413 | 0.81 | 6.84 |
11~12 | 417 | 0.77 | 5.98 |
Table 2 Effect of gelling pH on pore structure parameters of pseudo-boehmites
Gelling pH | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
7~8 | 173 | 0.29 | 5.60 |
8~9 | 188 | 0.40 | 5.44 |
9~10 | 412 | 0.73 | 5.10 |
10~11 | 413 | 0.81 | 6.84 |
11~12 | 417 | 0.77 | 5.98 |
Aging temperature/℃ | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
50 | 368 | 0.65 | 4.39 |
70 | 378 | 0.71 | 4.98 |
90 | 367 | 0.78 | 5.61 |
Table 3 Effect of aging temperature on pore structure parameters of pseudo-boehmites
Aging temperature/℃ | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
50 | 368 | 0.65 | 4.39 |
70 | 378 | 0.71 | 4.98 |
90 | 367 | 0.78 | 5.61 |
Aging pH | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
9.0 | 327 | 0.74 | 5.73 |
9.5 | 341 | 0.73 | 5.53 |
10.0 | 415 | 0.69 | 5.42 |
10.5 | 413 | 0.69 | 5.40 |
11.0 | 431 | 0.68 | 5.42 |
Table 4 Effect of aging pH on pore structure parameters of pseudo-boehmites
Aging pH | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
9.0 | 327 | 0.74 | 5.73 |
9.5 | 341 | 0.73 | 5.53 |
10.0 | 415 | 0.69 | 5.42 |
10.5 | 413 | 0.69 | 5.40 |
11.0 | 431 | 0.68 | 5.42 |
Aluminium sulfate concentration/(g·L-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
104 | 406 | 0.73 | 5.98 |
156 | 435 | 0.81 | 5.88 |
208 | 443 | 0.73 | 5.43 |
260 | 441 | 0.69 | 5.20 |
312 | 447 | 0.63 | 4.87 |
Table 5 Effect of the aluminium sulfate concentration on pore structure parameters of pseudo-boehmites
Aluminium sulfate concentration/(g·L-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
104 | 406 | 0.73 | 5.98 |
156 | 435 | 0.81 | 5.88 |
208 | 443 | 0.73 | 5.43 |
260 | 441 | 0.69 | 5.20 |
312 | 447 | 0.63 | 4.87 |
Aluminium sulfate dropping speed/(mL·min-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
10 | 475 | 0.82 | 6.92 |
20 | 413 | 0.84 | 6.84 |
40 | 412 | 0.74 | 5.98 |
60 | 421 | 0.67 | 5.12 |
80 | 416 | 0.67 | 4.92 |
Table 6 Effect of the aluminium sulfate dropping speed on pore structure parameters of pseudo-boehmites
Aluminium sulfate dropping speed/(mL·min-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
10 | 475 | 0.82 | 6.92 |
20 | 413 | 0.84 | 6.84 |
40 | 412 | 0.74 | 5.98 |
60 | 421 | 0.67 | 5.12 |
80 | 416 | 0.67 | 4.92 |
m((NH4)2CO3)/m(Al2O3)(g·100 g-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0 | 386 | 0.72 | 5.61 |
2.5 | 404 | 0.84 | 6.42 |
5 | 429 | 0.98 | 7.70 |
7.5 | 417 | 0.87 | 6.90 |
10 | 405 | 0.84 | 6.84 |
Table 7 Effect of ammonium carbonate on pore structure parameters of pseudo-boehmites
m((NH4)2CO3)/m(Al2O3)(g·100 g-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0 | 386 | 0.72 | 5.61 |
2.5 | 404 | 0.84 | 6.42 |
5 | 429 | 0.98 | 7.70 |
7.5 | 417 | 0.87 | 6.90 |
10 | 405 | 0.84 | 6.84 |
m(SiO2)/m(Al2O3)(g·100 g-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0 | 404 | 0.72 | 5.61 |
2 | 457 | 1.07 | 9.36 |
4 | 472 | 1.17 | 9.88 |
6 | 488 | 1.31 | 10.75 |
8 | 467 | 1.53 | 12.34 |
10 | 446 | 1.43 | 12.88 |
12 | 445 | 1.28 | 11.39 |
16 | 467 | 1.27 | 10.93 |
20 | 439 | 1.21 | 10.97 |
25 | 300 | 1.03 | 13.81 |
Table 8 Effect of sodium silicate on pore structure parameters of pseudo-boehmites
m(SiO2)/m(Al2O3)(g·100 g-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0 | 404 | 0.72 | 5.61 |
2 | 457 | 1.07 | 9.36 |
4 | 472 | 1.17 | 9.88 |
6 | 488 | 1.31 | 10.75 |
8 | 467 | 1.53 | 12.34 |
10 | 446 | 1.43 | 12.88 |
12 | 445 | 1.28 | 11.39 |
16 | 467 | 1.27 | 10.93 |
20 | 439 | 1.21 | 10.97 |
25 | 300 | 1.03 | 13.81 |
m((NH4)2CO3)/m(Al2O3)(g·100 g-1) | |||
---|---|---|---|
0 | 0.713 | 0.407 | 0.283 |
2.5 | 0.770 | 0.447 | 0.310 |
5 | 0.819 | 0.457 | 0.321 |
7.5 | 0.752 | 0.417 | 0.315 |
10 | 0.699 | 0.397 | 0.284 |
Table 9 Effect of ammonium carbonate on the surface acidity of γ-Al2O3 derived from pseudo-boehmites
m((NH4)2CO3)/m(Al2O3)(g·100 g-1) | |||
---|---|---|---|
0 | 0.713 | 0.407 | 0.283 |
2.5 | 0.770 | 0.447 | 0.310 |
5 | 0.819 | 0.457 | 0.321 |
7.5 | 0.752 | 0.417 | 0.315 |
10 | 0.699 | 0.397 | 0.284 |
m(SiO2)/m(Al2O3)(g·100 g-1) | |||
---|---|---|---|
2 | 0.708 | 0.456 | 0.231 |
4 | 0.723 | 0.463 | 0.239 |
6 | 0.772 | 0.500 | 0.251 |
8 | 0.712 | 0.435 | 0.259 |
10 | 0.692 | 0.457 | 0.215 |
12 | 0.567 | 0.395 | 0.165 |
14 | 0.507 | 0.427 | 0.080 |
16 | 0.411 | 0.328 | 0.078 |
20 | 0.385 | 0.348 | 0.040 |
25 | 0.332 | 0.286 | 0.040 |
Table 10 Effect of sodium silicate on the surface acidity of γ-Al2O3 derived from pseudo-boehmites
m(SiO2)/m(Al2O3)(g·100 g-1) | |||
---|---|---|---|
2 | 0.708 | 0.456 | 0.231 |
4 | 0.723 | 0.463 | 0.239 |
6 | 0.772 | 0.500 | 0.251 |
8 | 0.712 | 0.435 | 0.259 |
10 | 0.692 | 0.457 | 0.215 |
12 | 0.567 | 0.395 | 0.165 |
14 | 0.507 | 0.427 | 0.080 |
16 | 0.411 | 0.328 | 0.078 |
20 | 0.385 | 0.348 | 0.040 |
25 | 0.332 | 0.286 | 0.040 |
Catalysts | Conversion of IP/% | Selectivity/% | |
---|---|---|---|
TMCH | TMOL | ||
Cat-0 | 99.86 | 99.55 | 0.45 |
Cat-1 | 98.69 | 99.03 | 0.97 |
Cat-2 | 90.67 | 100 | 0 |
Cat-3 | 83.80 | 100 | 0 |
Cat-4 | 45.28 | 100 | 0 |
Table 11 Initial activity and selectivity of IP hydrogenation reaction on Pd/Al2O3 catalysts prepared by different methods
Catalysts | Conversion of IP/% | Selectivity/% | |
---|---|---|---|
TMCH | TMOL | ||
Cat-0 | 99.86 | 99.55 | 0.45 |
Cat-1 | 98.69 | 99.03 | 0.97 |
Cat-2 | 90.67 | 100 | 0 |
Cat-3 | 83.80 | 100 | 0 |
Cat-4 | 45.28 | 100 | 0 |
1 | FENG J, JIAN C, BING L, et al. Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts[J]. RSC Adv, 2016, 6(79): 75541-75551. |
2 | PANPRANOT J, TANGJITWATTAKORN O, PRASERTHDAM P, et al. Effects of Pd precursors on the catalytic activity and deactivation of silica-supported Pd catalysts in liquid phase hydrogenation[J]. Appl Catal A: Gen, 2005, 292: 322-327. |
3 | SOHLBERG K, PANTELIDES S, PENNYCOOK S. Surface reconstruction and the difference in surface acidity between gamma- and eta-alumina[J]. J Am Chem Soc, 2001, 123(1): 26-26. |
4 | WANG J A, BOKHIMI X, NOVARO O, et al. Effects of structural defects and acid-basic properties on the activity and selectivity of isopropanol decomposition on nanocrystallite sol-gel alumina catalyst[J]. J Mol Catal, 1999, 137: 239-252. |
5 | QI C L, LIN C, WANG Z F, et al. Technique improvement of high-pure alumina production process with alkoxide hydrolysis method[J]. Contemp Chem Ind, 2013, 42(3): 346-348. |
6 | LI T, JIN H X, LIU H L. Preparation of high purity Al2O3 from sodium aluminate solution by carbon decomposition and pickling assisted with ultrasonic[J]. Nonferrous Met Extr Metall, 2018, 9: 35-39. |
7 | ARABKHANI P, JAVADIAN H, ASFARAM A, et al. Decorating graphene oxide with zeolitic imidazolate framework (ZIF-8) and pseudo-boehmite offers ultra-high adsorption capacity of diclofenac in hospital effluents[J]. Chemosphere, 2021, 271(7): 129610. |
8 | REN X J, LIU Y Z, MIAO L X. Continuous carbonation for synthesis of pseudo-boehmite by using cross-flow rotating packed bed through the reaction of NaAlO2 solution with CO2 gas[J]. Nanomaterials, 2020, 10(2): 263-275. |
9 | LIU W J, SUI B K, YUAN S H, et al. Preparation of pseudo-boehmite by aluminium sulfate method[J]. Pet Process Petrochem, 2016, 47(1): 27-31. |
10 | 王楚, 冯辉霞, 梁顺琴, 等. Al2(SO4)3-NH3·H2O法大孔拟薄水铝石的制备及其应用[J]. 工业催化, 2015, 23(7): 541-544. |
WANG C, FENG H X, LIANG S Q, et al. Preparation of macropore pseudo- poehmite by Al2(SO4)3-NH3·H2O process and its application[J]. Ind Catal, 2015, 23(7): 541-544. | |
11 | 高建峰, 徐春彦, 王建中, 等. 用偏铝酸钠直接制取高纯拟薄水铝石[J]. 催化学报, 2003, 24(7): 505-508. |
GAO J F, XU C Y, WANG J Z, et al. Direct preparation of high-purity pseudo-boehmite from sodium metaaluminate[J]. Chin J Catal, 2003, 24(7): 505-508. | |
12 | 汪忠清, 梁顺琴, 李斯琴. 大孔容拟薄水铝石的研制及工业应用[J]. 石油化工, 2001, 30(3): 220-223. |
WANG Z Q, LIANG S Q, LI S Q. Development of commercial application of large pore volume pseudo-boehmite[J]. Petrochem Technol, 2001, 30(3): 220-223. | |
13 | 夏继平, 李晓云, 李世鹏. 不同硅源改性拟薄水铝石的制备及表征[J]. 无机盐工业, 2017, 49(5): 75-77. |
XIA J P, LI X Y, LI S P. Preparation and characterization of pseudo-boehmite modified with different silicon sources[J]. Inorg Chem Ind, 2017, 49(5): 75-77. | |
14 | 杨扬. 硅改性氧化铝基质的合成与表征[D]. 青岛: 中国石油大学(华东), 2016. |
YANG Y. Synthesis and characterization of silicon modified alumina matrix[D]. Qingdao:China University of Petroleum, 2016. |
[1] | Xing-Quan XIONG, Hui ZHANG, Li-Zhu GAO. Progress in Chemical Modification and Application of Lignin [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819. |
[2] | Hai-Xiang XIU, Wan-Qiang LIU, Dong-Ming YIN, Yong CHENG, Chun-Li WANG, Li-Min WANG. Research Progress of AB2 Laves Phase Hydrogen Storage Alloys [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 640-652. |
[3] | Wen-Jun SHI, Zhong-Hui SUN, Zhong-Qian SONG, XU-Jia NAN, Dong-Xue HAN, Li NIU. Research Progress of Layered Transition Metal Oxides Cathode Materials for Sodium-ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 583-596. |
[4] | Dan ZHANG, Run-Mei SHANG, Zhen-Tao ZHAO, Jun-Hua LI, Jin-Juan XING. Selective Oxidation of Methanol to Dimethoxymethane over V/Ce⁃Al2O3 Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1429-1436. |
[5] | Xian WANG, Xiao-Long YANG, Rong-Peng MA, Chang-Peng LIU, Jun-Jie GE, Wei XING. Atomic Dispersion Ir‑N‑C Catalysts for Anode Anti‑poisoning Electrolysis in Fuel Cell [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1202-1208. |
[6] | Bing-Gang CHEN, San-Rong LIU, Zi-Jiang JIANG, Xi-Fei YU. Preparation and Properties Characterization of Hydrophilic Polysiloxane and Polyvinyl Alcohol Composite as Skin Barrier Material [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1224-1236. |
[7] | Dong-Dong LI, Li QIN, Lu-Hua TANG, Wen-Hui GAO. Preparation and Application of Basic OrangeⅡImprinted Sensor [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1052-1064. |
[8] | Mei-Lun ZHANG, Hong-Ran LING, Zai-Chun SUN, Bing-Chu MEI, Wei-Wei LI. Research Progress on the Preparation Methods of BaMgF4 Powders [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 900-911. |
[9] | Feng LI, Shi-Yu LU, Yu ZHANG, Li-Jun GUO, Xue ZHAI, Cui-Qin LI. Catalytic Properties of Silylated⁃Salicylaldimine Transition Metal Complexes Functionalized Nano⁃silica Catalysts in Ethylene Oligomerization [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 949-959. |
[10] | Li-Jun WU, Shou-Jie GUO, Chao ZHANG, Zhi-Sheng LI, Wei-Cong LI, Chang-Chun YANG. In⁃situ Electrochemical Preparation of Li⁃Na Alloy and the Co⁃storage of Li+ and Na+ Ions [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1757-1765. |
[11] | Zhu-Ying ZHANG, De-Yan DU, Jia-Hua ZHOU, Dong-Jian SHI, Ming-Qing CHEN. Preparation and Properties of Mussel-Inspired Modified Gelatin-Based Hemostatic Sponge [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 247-257. |
[12] | NIU Zhan-Ning, TANG Hao-Qing, ZHENG Chao, TIAN Tian, ZHENG Li-Yun. Study on [RESA]Br@-COOH@Fe3O4 with Density Functional Theory [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 825-835. |
[13] | JIAO Zi-Xue, GAO Cheng-Zhe, SUN Shuo, WU Zhen-Xu, ZHANG Pei-Biao. Preparation, Characterization and Performance of Gelatin Modified Polyetheretherketone Microcarriers [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 0-0. |
[14] | JIAO Zi-Xue, GAO Cheng-Zhe, SUN Shuo, WU Zhen-Xu, ZHANG Pei-Biao. Preparation, Characterization and Performance of Gelatin Modified Polyetheretherketone Microcarriers [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 390-397. |
[15] | XU Feng, ZHANG Kun, YIN Feng-Qin, XU Fei, PANG Yu-Xuan, CHEN Shi-Ting. Research Progress in Preparation and Application of Anion Imprinted Polymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 123-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||