[1] |
BOERMAN M A, ROOZEN E, SANCHEZ-FERNANDEZ M J, et al. Next generation hemostatic materials based on NHS-ester functionalized poly (2-oxazoline) s[J]. Biomacromolecules, 2017, 18(8):2529-2538.
|
[2] |
WANG S, YUAN J, YANG J, et al. Advancement of platelet-inspired nanomedicine[J]. Platelets, 2018, 29(7):690-694.
|
[3] |
石长灿, 赵瑾, 刘雯, 等. 可吸收止血材料的研究与应用进展[J]. 高分子通报, 2018(5):1-13.
|
|
SHI C C, ZHAO J, LIU W, et al. Recent development and application of absorbable hemostatic materials[J]. Polym Bull, 2018(5):1-13.
|
[4] |
杨珏莹, 林礼智, 陈煜, 等. 急救用新型快速止血材料研究进展[J]. 化工新型材料, 2020, 48(7):24-29.
|
|
YANG J Y, LIN L Z, CHEN Y, et al. Research progress on the new-type quick hemostatic material for first aid[J]. New Chem Mater, 2020, 48(7):24-29.
|
[5] |
LI Z, MILIONIS A, ZHENG Y, et al. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion[J]. Nat Commun, 2019, 10(1):5562.
|
[6] |
LI Q, LU F, SHANG S, et al. Biodegradable microporous starch with assembled thrombin for rapid induction of hemostasis[J]. ACS Sustainable Chem Eng, 2019, 7(10):9121-9132.
|
[7] |
LEONHARDT E E, KANG N, HAMAD M A, et al. Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan[J]. Nat Commun, 2019, 10(1):2307.
|
[8] |
LIU C, YAO W, TIAN M, et al. Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis[J]. Biomaterials, 2018, 179:83-95.
|
[9] |
ZHANG Y, GUAN J, WU J, et al. N-alkylated chitosan/graphene oxide porous sponge for rapid and effective hemostasis in emergency situations[J]. Carbohydr Polym, 2019, 219:405-413.
|
[10] |
RYU J H, KIM H J, KIM K, et al. Multipurpose intraperitoneal adhesive patches[J]. Adv Funct Mater, 2019, 29(29):1900495.
|
[11] |
靳宁宁, 苏丽, 高海军, 等 烷基化壳聚糖/多巴胺/氧化石墨烯粉末用于快速止血[J]. 精细化工, 2020, 37(10):2009-2014.
|
|
JIN N N, SU L, GAO H J, et al. Alkylated chitosan/polydopamine/graphene oxide power for rapid hemostasis[J]. Fine Chem, 2020, 37(10):2009-2014.
|
[12] |
YUAN H, CHEN L, HONG F F. A Biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing[J]. ACS Appl Mater Interfaces, 2020, 12(3):3382-3392.
|
[13] |
GAO H, ZHONG Z, XIA H, et al. Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials[J]. Biomater Sci, 2019, 7(6):2571-2581.
|
[14] |
CHE C, LIU L, WANG X, et al. Surface-adaptive and on-demand antibacterial sponge for synergistic rapid hemostasis and wound disinfection[J]. ACS Biomater Sci Eng, 2020, 6(3):1776-1786.
|
[15] |
HOU S, LIU Y, FENG F, et al. Polysaccharide-peptide cryogels for multidrug-resistant-bacteria infected wound healing and hemostasis[J]. Adv Healthc Mater, 2020, 9(3):1901041.
|
[16] |
HONG Y, ZHOU F, HUA Y, et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds[J]. Nat Commun, 2019, 10(1):2060.
|
[17] |
YUK H, VARELA C E, NABZDYK C S, et al. Dry double-sided tape for adhesion of wet tissues and devices[J]. Nature, 2019, 575(7781):169-174.
|
[18] |
LIANG Y, ZHAO X, HU T, et al. Adhesive hemostatic conducting injectable composite hydrogels withsustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing[J]. Small, 2019, 15(12):e1900046.
|
[19] |
CUI C, FAN C, WU Y, et al. Water-triggered hyperbranched polymer universal adhesives: from strong underwater adhesion to rapid sealing hemostasis[J]. Adv Mater, 2019, 31(49):1905761.
|
[20] |
BAI S, ZHANG X, CAI P, et al. A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues[J]. Nanoscale Horiz, 2019, 4(6):1333-1341.
|
[21] |
ZHAO X, LIANG Y, HUANG Y, et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing[J]. Adv Funct Mater, 2020, 30(17):1910748.
|
[22] |
LIU C, LIU X, LIU C, et al. A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis[J]. Biomaterials, 2019, 205:23-37.
|
[23] |
OUYANG Q, HOU T, LI C, et al. Construction of a composite sponge containing tilapia peptides and chitosan with improved hemostatic performance[J]. Int J Biol Macromol, 2019, 139:719-729.
|
[24] |
MAIER G P, RAPP M V, WAITE J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement[J]. Science, 2015, 349(6248):628.
|
[25] |
章晶晶, 肖鑫, 施冬健, 等. 聚多巴胺在强负电型微球表面的形貌调控[J]. 应用化学, 2020, 37(7):756-763.
|
|
ZHANG J J, XIAO X, SHI D J, et al. Morphology regulation of polydopamine self-polymerization on the surface of strongly electronegative microspheres[J]. Chinese J Appl Chem, 2020, 37(7):756-763.
|
[26] |
GEBBIE M A, WEI W, SCHRADER A M, et al. Tuning underwater adhesion with cation-π interactions[J]. Nat Chem, 2017, 9(5):473-479.
|
[27] |
LI Y, LIANG C, GAO L, et al. Hidden complexity of synergistic roles of dopa and lysine for strong wet adhesion[J]. Mater Chem Front, 2017, 1(12):2664-2668.
|
[28] |
白忠祥, 但年华, 但卫华, 等. 双醛羧甲基纤维素-胶原复合止血材料的研制[J]. 材料导报, 2018, 32(20):3628-3633.
|
|
BAI Z X, DAN N H, DAN W H, et al. Preparation of dialdehyde carboxymethyl cellulose-collagen composite hemostatic material[J]. Mater Rep, 2018, 32(20):3628-3633.
|
[29] |
AROCA A S, PRADAS M M, RIBELLES J L G. Effect of crosslinking on porous poly (methyl methacrylate) produced by phase separation[J]. Colloid Polym Sci, 2007, 286(2):209-216.
|
[30] |
BU Y, ZHANG L, LIU J, et al. Synthesis and properties of hemostatic and bacteria-responsive in situ hydrogels for emergency treatment in critical situations[J]. ACS Appl Mater Interfaces, 2016, 8(20):12674-12683.
|
[31] |
LEE J H, JUNG H W, KANGI K, et al. Cell behaviour on polymer surfaces with different functional groups[J]. Biomaterials, 1994, 15(9):705-711.
|