Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (11): 1757-1765.DOI: 10.19894/j.issn.1000-0518.220074
• Full Papers • Previous Articles Next Articles
Li-Jun WU1, Shou-Jie GUO1(), Chao ZHANG1, Zhi-Sheng LI1, Wei-Cong LI1, Chang-Chun YANG2()
Received:
2022-03-15
Accepted:
2022-07-07
Published:
2022-11-01
Online:
2022-11-09
Contact:
Shou-Jie GUO,Chang-Chun YANG
About author:
gsjxcu@126.comSupported by:
CLC Number:
Li-Jun WU, Shou-Jie GUO, Chao ZHANG, Zhi-Sheng LI, Wei-Cong LI, Chang-Chun YANG. In⁃situ Electrochemical Preparation of Li⁃Na Alloy and the Co⁃storage of Li+ and Na+ Ions[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1757-1765.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220074
Fig.1 (A) Cyclic Voltammetry (CV) curves and (B) Electrochemical Impedance Spectroscopy (EIS) of lithium metal versus sodium metal button battery by adding 1 mol/L LiPF6 in EC/DEC with the volume ratio of 1∶1, 1 mol/L NaClO4 in EC/DEC/DMC with the volume ratio of 1∶1∶1 and the above two mixed electrolytes with equal volume
Fig.2 Scanning electron microscopy (SEM) images of lithium and sodium metal disc after 2000 cycles at the current density of 0.1 A/gLithium metal disc pre-embedded with sodium: A. LiPF6 electrolyte; C. NaClO4 electrolyte; E. lithium sodium mixed ion electrolyte. Sodium metal disc pre-embedded with lithium: B. LiPF6 electrolyte; D. NaClO4 electrolyte; F. lithium sodium mixed ion electrolyte
Fig.3 EDS of lithium and sodium metal disc after 2000 cycles at the current density of 0.1 A/gLithium sodium alloy with low Na content: A. LiPF6 electrolyte; B. NaClO4 electrolyte; C. lithium sodium mixed ion electrolyte Lithium sodium alloy with high Na content: D. LiPF6 electrolyte; E. NaClO4 electrolyte; F. lithium sodium mixed ion electrolyte
Fig.6 The gradient tests were obtained by using SCDC-activated as the test electrode, (A) and (B) lithium sodium alloy with low Na content and (D) and (E) lithium sodium alloy with high Na content as the counter electrodes, (C) and (F) cyclic stability directly tested after gradient tests at 1 A/g current density
Fig.7 (A) The Cyclic voltammetry curves at 0.4 mV/s and (B) Electrochemical impedance contrast diagrams before and after 1000 at 1 A/g current density were determined by using SCDC-activated as the test electrode, lithium sodium alloy with high Na content as the counter electrodes
1 | ARMAND M, TARASEON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | 胡健, 蒙延双, 胡倩茹. 磷化镍/氮磷共掺杂碳负极材料的制备及其电化学性能研究[J]. 电化学, 2021, 27(5): 540-548. |
HU J, MENG Y S, HU Q R. Synthesis of nickel phosphide/nitrogen phosphorus co-doped carbon and its application in lithium ion batteries[J]. J Electrochem, 2021, 27(5): 540-548. | |
3 | 官亦标, 沈进冉, 李康乐, 等. 电容锂离子电池研究进展[J]. 储能科学与技术, 2019, 8(5): 799-806. |
GUAN Y B, SHEN J R, LI K L,et al. Research progress on capacitive lithium-ion battery[J]. Energy Storage Sci Technol, 2019, 8(5): 799-806. | |
4 | YANG X, WANG S, YU D, et al. Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity[J]. Nano Energy, 2019, 58: 392-398. |
5 | 郎俊伟, 张旭, 杨兵军, 等.非水体系锂/钠离子电容器研究进展[J].中国科学: 化学, 2018, 48(12): 1478-1513. |
LANG J W, ZHANG X, YANG B J, et al. Research progress in nonaqueous lithium/sodium-ion capacitors[J]. Sci China Chem, 2018, 48(12): 1478-1513. | |
6 | LE Z, LIU F, NIE P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors[J]. ACS Nano, 2017, 11(3): 2952-2960. |
7 | YAO H R, YOU Y, YIN Y X, et al. Rechargeable dual-metal-ion batteries for advanced energy storage[J]. Phys Chem Chem Phys, 2016, 18: 9326-9333. |
8 | LI S H, CHEN J W, GONG X F, et al. A nonpresodiate sodium-ion capacitor with high performance[J]. Small, 2018, 14(50): 1804035. |
9 | 赵立平, 陶科宇, 王宏宇, 等. 钛酸钠纳米管-碳复合材料用作钠离子电容电池负极材料[J]. 应用化学, 2018, 35(10): 1264-1270. |
ZHAO L P, TAO K Y, WANG H Y, et al. Sodium titanate nanotube-carbon composite as negative electrode materials for Na-ion supercapattery[J]. Chinese J Appl Chem, 2018, 35(10): 1264-1270. | |
10 | JIA R, JIANG Y, LI R, et al. Nb2O5 nanotubes on carbon cloth for high performance sodium ion capacitors[J]. Sci China Mater, 2020, 63: 1171-1181. |
11 | JIA R, SHEN G Z, CHEN D. Recent progress and future prospects of sodium-ion capacitors[J]. Sci China Mater, 2020, 63(2): 22. |
12 | ZHANG Y, JIANG J, AN Y, et al. Sodium-ion capacitors: materials, mechanism, and challenges[J]. Chem Sus Chem, 2020, 13(10): 2522-2539. |
13 | XIN S, YU L, YOU Y, et al. The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon[J]. Nano Lett, 2016, 16: 4560-4568. |
14 | LIU W J, CHEN X L, ZHANG C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na[J]. ACS Appl Mater Inter, 2019, 11(26): 23207-23212. |
15 | NAM D H, KIM T H, HONG K S, et al. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries[J]. ACS Nano, 2014, 8(11): 11824-11835. |
16 | JIAN D, WEI Z, CHAO W, et al. Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries[J]. Nano Energy, 2015, 16: 479-487. |
17 | KONG F, HAN Z, TAO S, et al. Core-shell structured SnSe@C microrod for Na-ion battery anode[J]. J Energy Chem, 2021(4): 9. |
18 | ZHANG J, YIN Y X, GUO Y G. High-capacity Te anode confined in microporous carbon for long-life Na-ion batteries[J]. ACS Appl Mater, 2015, 7(50): 27838-27844. |
19 | FANG Y J, YU X Y, LOU X W. Formation of polypyrrole-coated Sb2Se3 microclips with enhanced sodium-storage properties[J]. Angew Chem Int Ed, 2018, 57(31): 9859-9863. |
20 | LI W, ZHOU M, LI H, et al Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries[J]. Electrochem Commun, 2015, 60: 74-77. |
21 | WANG M, PENG A, XU H, et al. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage[J]. J Power Sources, 2020, 469: 228414. |
22 | JIA W G, MIAO X Z, XIN Z, et al. Redispersed Bi nanoparticles on graphene fiber fabric anode regulated by microwave irradiation for flexible sodium ion capacitors[J]. Chem Eng J, 2022, 433: 133521. |
23 | WANG G R, LI Y P, JIAO S H, et al. Realizing the synergy of Sn cluster incorporation and nitrogen doping for a carbonaceous hierarchical nanosheet-assembly enables superior universal alkali metal ion storage performance with multiple active sites[J]. J Mater Chem A, 2020, 8: 24774-24781. |
24 | PALANISELVAM T, BABU B, MOON H, et al. Tin-containing graphite for sodium-ion batteries and hybrid capacitors[J]. Batteries Supercaps, 2021, 4(1): 173-182. |
25 | ZHANG L, ZHU X L, WANG G Y, et al. Bi nanoparticles embedded in 2D carbon nanosheets as an interfacial layer for advanced sodium metal anodes[J]. Small, 2021, 17(12): 2007578. |
26 | WANG G, YU F, ZHANG Y, et al. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization[J]. Nano Energy, 2021, 79: 105457. |
27 | STARK J K, DING Y, KOHL P A. Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery[J]. J Electrochem Soc, 2011, 158(10): A1100-A1105. |
28 | MA J L, MENG F L, YUE Y, et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries[J]. Nat Chem, 2019, 11: 64-70. |
29 | YU D L, LIU D, SHI L, et al. High-performance metal-iodine batteries enabled by a bifunctional dendrite-free Li-Na alloy anode[J]. J Mater Chem A,2021, 9(1): 538-545. |
30 | ZHANG Q, LU Y Y, MIAO L C, et al. An alternative to lithium metal anodes: non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries[J]. Angew Chem, 2018, 130(45): 15012-15016. |
31 | WANG W, ZHANG R P, ZUO P J, et al. An interphase-enhanced liquid Na-K anode for dendrite-free alkali metal batteries enabled by SiCl4 electrolyte additive[J]. Energy Storage Mater, 2021, 37: 199-206. |
[1] | GUO Shao-Bo, LIANG Yan-Li, LIU Zhi-Feng, ZHANG Qiang, MA Jian-Qi. Synergistic Antibacterial Activity of Tetracycline Combined with Silver Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1462-1468. |
[2] | ZHU Haotian, LI Xiaohui, BAI Jianping, LU Mingda, AN Yue , YOU Wansheng . Synthesis, Crystal Structure and Catalytic Activity of a Dawson-type Tungstophosphate Decorated by Copper Complexes [J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 433-441. |
[3] | TAN Yuhuia, WANG Yana, ZHANG Menga, GAO Jixinga, XU Qinga, TANG Yunzhia, , YANG Shaopingb, . Electrodeposited Zn-Ni-P-La Alloys Coating for Electrolytic Copper Foil [J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 458-463. |
[4] | GUO Qiulan, GUO Qingquan*, LUO Ruhong, TAN Dicong, LAI Xiangfeng, GUO Shaofeng. Biosynthesis of Gold Nanoparticles Using Vine Tea Powder Extracts [J]. Chinese Journal of Applied Chemistry, 2014, 31(07): 841-846. |
[5] | LIU Tao1, WEI Dong1, JIANG Bo1, XU Guoyong1, ZHOU Shuangsheng1,2*. Synthesis,Characterization and Antitumor Activitiesof of Cu(Ⅱ)-Aspirin Complex [J]. Chinese Journal of Applied Chemistry, 2014, 31(03): 296-302. |
[6] | ZHENG Yizhi, WANG Haishui*. Preparation of Silver/Silica Composite Core-shell Nanoparticles and Influence of Shell Thickness on Optical Properties [J]. Chinese Journal of Applied Chemistry, 2014, 31(03): 323-327. |
[7] | WANG Juan2*, QI Xiaoting2, LI Ziying1*, HE Fulan2, ZHU Wenhua2, GUO Jian1. Synthesis, Structure, Electrochemical, Fluorescent Property and Photocatalytic Activity of Uranium(Ⅵ) Hybrid Supramolecules [J]. Chinese Journal of Applied Chemistry, 2014, 31(02): 193-199. |
[8] | TANG Meixiang, YI Qingfeng*. Synthesis and Electrocatalysis Activity of Silver-Tin Bimetallic Catalysts for Oxygen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2013, 30(10): 1176-1181. |
[9] | REN Yinghui1,2*, LI Wen2, ZHANG Xianbo2, ZHAO Fengqi1, YI Jianhua1, MA Haixia2, XU Kangzhen2, SONG Jirong2,3. Nonisothermal Decomposition Kinetics and Thermal Safety of Ag2(BTATz)·2H2O(BTATz=3,6-Bis(1-H-1,2,3,4-tetrazole-5-amino)-1,2,4,5-tetrazine) [J]. Chinese Journal of Applied Chemistry, 2013, 30(09): 1036-1041. |
[10] | ZHAO Jing1,2, ANG Heng3,ZHU Guoyi1*. Synthesis and Coordination Mechanism of a Complex Formed Between D-Mannose Oxime and Copper Cations with Mixed-valence [J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1158-1162. |
[11] | WANG Juan*, LV Xin, HE Fu-Lan, SU Jin-Xiong. Synthesis, Crystal Structure and Luminescence Properties of a Supramolecular Compound [UO2Cl4][phenH]2 and [UO2Cl4][phenH]2/PVA Film [J]. Chinese Journal of Applied Chemistry, 2011, 28(02): 168-176. |
[12] | QIU Jun*, WANG Jiangang, SUN Jie. Synthesis of 1-Tetralones by Intramolecular Friedel-Crafts Reaction of 4-Phenylbutyric Acids Using Modified Zeolite H-BEA [J]. Chinese Journal of Applied Chemistry, 2011, 28(02): 194-198. |
[13] | SUN Wei1,3, ZHANG Qi-Sheng2, CHENG Yan-Xiang1*, XIE Zhi-Yuan1, LU Can-Zhong2, WANG Li-Xiang1. Phosphorescent Cuprous Complexes with 2-pyridylmethyldiphenylphosphine: Synthesis, Photophysical Properties and Electroluminescence [J]. Chinese Journal of Applied Chemistry, 2010, 27(12): 1403-1408. |
[14] | GUO Qi1,2, MIAO Jian-Jun1, GENG Jun1,2, ZHU Jun-Jie1*. Synthesis of Cu/Cu2O nanomaterials by microwave thermo-decomposition method [J]. Chinese Journal of Applied Chemistry, 2010, 27(12): 1438-1443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||