应用化学 ›› 2023, Vol. 40 ›› Issue (11): 1550-1557.DOI: 10.19894/j.issn.1000-0518.230166
周叶红1, 张旭艺1, 芦冬涛1, 徐会文2, 刘洋1(), 董川1()
收稿日期:
2023-06-05
接受日期:
2023-10-05
出版日期:
2023-11-01
发布日期:
2023-12-01
通讯作者:
刘洋,董川
基金资助:
Ye-Hong ZHOU1, Xu-Yi ZHANG1, Dong-Tao LU1, Hui-Wen XU2, Yang LIU1(), Chuan DONG1()
Received:
2023-06-05
Accepted:
2023-10-05
Published:
2023-11-01
Online:
2023-12-01
Contact:
Yang LIU,Chuan DONG
About author:
DC@sxu.edu.cnSupported by:
摘要:
通过一步水热法,以柠檬酸和尿素为原料,制备了蓝色氮化碳量子点(CNQDs),并对CNQDs的粒径分布、元素组成、形貌结构及表面官能团进行了表征,考察了CNQDs的光谱性质。以CNQDs为母体与罗丹明B(RhB)构成比率荧光探针CNQDs/RhB,基于CNQDs/RhB(447 nm/581 nm)的荧光强度比值F0=(F447/F581)的变化情况对汞离子(Hg2+)进行定量测定,具有高选择性和灵敏性。结果显示,该探针对Hg2+的检测线性范围为2~40 μmol/L,检出限为1.95 μmol/L。常见的阴离子和阳离子对CNQDs/RhB检测Hg2+基本无影响,并对该比率型荧光探针的检测机制进行了探究。最后,将该探针应用于实际水样中Hg2+的检测,说明该探针具有潜在的应用价值。通过研究,对Hg2+的检测提供了新的思路,也预示了该荧光探针在水环境检测方面具有广阔的应用前景。
中图分类号:
周叶红, 张旭艺, 芦冬涛, 徐会文, 刘洋, 董川. 基于氮化碳量子点/罗丹明B系统检测汞离子的比率荧光探针[J]. 应用化学, 2023, 40(11): 1550-1557.
Ye-Hong ZHOU, Xu-Yi ZHANG, Dong-Tao LU, Hui-Wen XU, Yang LIU, Chuan DONG. Ratio Fluorescence Sensor Based on Carbon Nitride Quantum Dots/Rhodamine B System for Mercury Ion Detection[J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1550-1557.
图1 (A) CNQDs的TEM图, 内插图为CNQDs的HRTEM; (B) CNQDs的XRD表征; (C) CNQDs的XPS表征; (D) CNQDs的FT-IR光谱图; (E) CNQDs的紫外-可见吸收光谱、荧光激发和发射图; (F) CNQDs的激发波长依赖性荧光光谱图
Fig.1 (A) TEM image of CNQDs, inset is the HRTEM; (B) XRD spectrum of CNQDs; (C) XPS spectrum of CNQDs; (D) FT-IR spectrum of CNQDs; (E) The absorption, excitation and emission spectra of CNQDs; (F) The excitation dependent fluorescence spectra of CNQDs
图2 (A) CNQDs/RhB的荧光光谱图; (B) pH值对CNQDs/RhB体系检测Hg2+荧光强度的影响
Fig.2 (A) The fluorescence spectra of CNQDs/RhB; (B) The effect of pH on the fluorescence intensity of Hg2+ sensed by CNQDs/RhB systems
Water samples | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/%(n=3) |
---|---|---|---|---|
Tap water | 5.00 | 5.29 | 105.8 | 4.8 |
10.00 | 10.12 | 101.2 | 3.3 | |
35.00 | 35.91 | 102.6 | 1.5 | |
Lake | 5.00 | 5.91 | 110.2 | 6.8 |
10.00 | 11.00 | 110 | 4.8 | |
35.00 | 34.58 | 98.8 | 1.4 |
表1 CNQDs/RhB比率荧光探针对水样中Hg2+的检测能力
Table 1 The detection ability of CNQDs/RhB ratio fluorescent probes for Hg2+ in water samples
Water samples | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/%(n=3) |
---|---|---|---|---|
Tap water | 5.00 | 5.29 | 105.8 | 4.8 |
10.00 | 10.12 | 101.2 | 3.3 | |
35.00 | 35.91 | 102.6 | 1.5 | |
Lake | 5.00 | 5.91 | 110.2 | 6.8 |
10.00 | 11.00 | 110 | 4.8 | |
35.00 | 34.58 | 98.8 | 1.4 |
1 | POMAL N C, BHATT K D, MODI K M, et al. Functionalized silver nanoparticles as colorimetric and fluorimetric sensor for environmentally toxic mercury ions: an overview[J]. J Fluorescence, 2021, 31(3): 635-649. |
2 | RÍOS M C, BRAVO N F, SÁNCHEZ C C, et al. Chemosensors based on N-heterocyclic dyes: advances in sensing highly toxic ions such as CN- and Hg2+[J]. RSC Adv, 2021, 11(54): 34206-34234. |
3 | ZHANG L, WANG Y, HUANG J, et al. Azido chelating fiber: synthesis, characterization and adsorption performances towards Hg2+ and Pb2+ from water[J]. Polym Adv Technol, 2017, 28(11): 1418-1427. |
4 | FITRI Z, ADLIM M, SURBAKTI M S, et al. Mercury(II) ions assessment as a toxic waste hazard in solution based on imagery data for a part of environmental disaster management; proceedings of the IOP Conference Series: Earth and Environmental Science, F, 2019[C]. IOP Publishing. |
5 | HASSAN A M, AHMED H M, ABOUL-ENEIN H Y. New simple ion-selective membrane electrode for serious environmental pollutant, mercury(II), analysis in aqueous solution, fluorescent mercury lamp white dust, mercurochrome and dental alloy[J]. Curr Anal Chem, 2018, 14(1): 36-42. |
6 | SONG S, LI Y, LIU Q S, et al. Interaction of mercury ion (Hg2+) with blood and cytotoxicity attenuation by serum albumin binding[J]. J Hazard Mater, 2021, 412: 125158. |
7 | HE L, LU Y, WANG F, et al. Bare eye detection of Hg(II) ions based on enzyme inhibition and using mercaptoethanol as a reagent to improve selectivity[J]. Microchim Acta, 2018, 185(3): 1-8. |
8 | SERAFIMOVSKI I, KARADJOVA I, STAFILOV T, et al. Determination of inorganic and methylmercury in fish by cold vapor atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry[J]. Microchem J, 2008, 89(1): 42-47. |
9 | LIU P, PTACEK C J, BLOWES D W, et al. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy[J]. J Hazard Mater, 2016, 308: 233-242. |
10 | DOMANICO F, FORTE G, MAJORANI C, et al. Determination of mercury in hair: comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry[J]. J Trace Elements Med Biol, 2017, 43: 3-8. |
11 | THIRUMALAI M, KUMAR S N, PRABHAKARAN D, et al. Dynamically modified C18 silica monolithic column for the rapid determinations of lead, cadmium and mercury ions by reversed-phase high-performance liquid chromatography[J]. J Chromatogr A, 2018, 1569: 62-69. |
12 | LIMA A F, DA COSTA M C, FERREIRA D C, et al. Fast ultrasound-assisted treatment of inorganic fertilizers for mercury determination by atomic absorption spectrometry and microwave-induced plasma spectrometry with the aid of the cold-vapor technique[J]. Microchem J, 2015, 118: 40-44. |
13 | KUMAR A, AHMED N. Indirect approach for CN-detection: development of “naked-eye” Hg2+-induced turn-off fluorescence and turn-on cyanide sensing by the Hg2+ displacement approach[J]. Ind Eng Chem Res, 2017, 56(22): 6358-6368. |
14 | CHEN J, GAO Y, HU X, et al. Detection of hydroquinone with a novel fluorescence probe based on the enzymatic reaction of graphite phase carbon nitride quantum dots[J]. Talanta, 2019, 194: 493-500. |
15 | ZHANG Q, LIU Y, NIE Y, et al. Wavelength-dependent surface plasmon coupling electrochemiluminescence biosensor based on sulfur-doped carbon nitride quantum dots for K-RAS gene detection[J]. Anal Chem, 2019, 91(21): 13780. |
16 | DANG X, ZHAO H, WANG X, et al. Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide[J]. Microchim Acta, 2018, 185(7): 1-8. |
17 | GU S, HSIEH C T, GANDOMI Y A, et al. Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dots[J]. J Mate Chem C, 2019, 7(18): 5468-5476. |
18 | LI L, WANG J, XU S, et al. Recent progress in fluorescent probes for metal ion detection[J]. Frontiers Chem, 2022, 10: 875241-875256. |
19 | JAKIMIŃSKA A, PAWLICKI M, MACYK W. Photocatalytic transformation of rhodamine B to rhodamine-110-the mechanism revisited[J]. J Photochem Photobiol A, 2022, 433: 114176-83. |
20 | CHENG X, LI S, GONG M, et al. Novel ratiometric fluorescent probe based on internal reference and its detection of hydrazine[J]. J Fluoresc, 2022, 32(3): 1135-1141. |
21 | HAMD-GHADAREH S, HAMAH-AMEEN B A, SALIMI A, et al. Ratiometric enhanced fluorometric determination and imaging of intracellular microRNA-155 by using carbon dots, gold nanoparticles and rhodamine B for signal amplification[J]. Microchim Acta, 2019, 186(7): 1-12. |
22 | TAO H, ZHANG Z, CAO Q, et al. Ratiometric fluorescent sensors for nitrite detection in the environment based on carbon dot/rhodamine B systems[J]. RSC Adv, 2022, 12(20): 12655-12662. |
23 | YANG Y, XIAO X, XING X, et al. Rhodamine B assisted graphene quantum dots flourescent sensor system for sensitive recognition of mercury ions[J]. J Lumin, 2019, 207: 273-281. |
24 | LI H, ZHANG C, WANG J, et al. Pristine graphic carbon nitride quantum dots for the visualized detection of latent fingerprints[J]. Anal Sci, 2021, 37(11): 1497-1503. |
25 | MOUSAVI A, ZARE-DORABEI R, MOSAVI S H. Sensitive detection of tamsulosin hydrochloride based on dual-emission ratiometric fluorescence probe consisting of amine-carbon quantum dots and rhodamine B[J]. Sci Rep, 2021, 11(1): 20805-20815. |
26 | LIN L, ZOU C. Kinetic and thermodynamic study of magnetic separable β-cyclodextrin inclusion complex with organic phosphoric acid applied to removal of Hg2+[J]. J Chem Eng Data, 2017, 62(2): 762-772. |
27 | LIN S Y, ZHU H, XU W J, et al. A squaraine based fluorescent probe for mercury ion via coordination induced deaggregation signaling[J].Chin Chem Lett, 2014, 25(9): 1291-1295. |
28 | HOLLETT G, ROBERTS D S, SEWELL M, et al. Quantum ensembles of silicon nanoparticles: discrimination of static and dynamic photoluminescence quenching processes[J]. J Phys Chem C, 2019, 123(29): 17976-17986. |
29 | CIOTTA E, PROSPOSITO P, PIZZOFERRATO R. Positive curvature in Stern-Volmer plot described by a generalized model for static quenching[J]. J Lumin, 2019, 206: 518-522. |
[1] | 于盼, 王光辉, 郭建花, 郭峤志, 董川. 黄色荧光碳点用于盐酸金霉素的检测[J]. 应用化学, 2023, 40(7): 1017-1023. |
[2] | 于红丽, 周思仪, 洪琛, 罗稳. 基于黄酮骨架的“关-开”型荧光探针用于检测活细胞内丁酰胆碱酯酶[J]. 应用化学, 2023, 40(4): 500-508. |
[3] | 张月霞, 范小鹏, 曹宇娟, 杨欣彤, 李忠平, 杨振华, 董川. 热解法制备油溶性碳量子点用于土霉素的检测[J]. 应用化学, 2023, 40(4): 509-517. |
[4] | 耿佳美, 马素芳, 刘文, 刁海鹏, 武志芳, 李思进. 肝靶向荧光探针用于HepG2细胞中ONOO-的特异性检测[J]. 应用化学, 2023, 40(3): 441-448. |
[5] | 唐连波, 付大友, 陈琦, 奉阳润, 熊桠林, 王竹青. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学, 2022, 39(8): 1294-1302. |
[6] | 薛松松, 解正峰, 何佳伟, 张天怡, 夏保平, 李雨芹. 高选择性快速识别汞(Ⅱ)离子的磺酰腙型探针的合成及在吸附中的应用[J]. 应用化学, 2022, 39(5): 760-768. |
[7] | 董国华, 郝丽娟, 张文治, 柴东凤, 赵明, 郎坤. 碳量子点纳米材料在铅卤钙钛矿太阳能电池中的应用研究进展[J]. 应用化学, 2022, 39(5): 707-722. |
[8] | 黄蕊, 叶长青, 李亚军, 邱盟峯, 李达谅, 鲍红丽. 线粒体靶向的近红外HClO/ClO-荧光探针的研究进展[J]. 应用化学, 2022, 39(3): 407-424. |
[9] | 张成路, 王一鸣, 任芷漩, 李露, 李雨晴, 宋府璐. 以苯并咪唑萘酰亚胺为荧光团高选择快速检测H2S的荧光探针[J]. 应用化学, 2022, 39(3): 489-497. |
[10] | 于思为, 王良鹏, 金日哲, 康传清. 氧杂蒽类荧光探针对ClO-的识别和细胞成像应用[J]. 应用化学, 2022, 39(12): 1903-1911. |
[11] | 张成路, 暴金迪, 于丰铭, 董文静, 张洋, 宫荣庆, 张彦朋, 张璐. 以喹唑啉酮为核心高选择高灵敏识别次氯酸根离子的荧光探针的合成及应用[J]. 应用化学, 2021, 38(8): 986-994. |
[12] | 薄纯辉, 姜维佳, 王玉高, 石利红, 董川. 煤基碳量子点合成研究进展[J]. 应用化学, 2021, 38(7): 767-788. |
[13] | 温广明, 焦婷, 杜孝艳, 李忠平. 硫氮共掺杂碳量子点的制备及应用[J]. 应用化学, 2021, 38(6): 722-730. |
[14] | 郝丽娟, 王婷, 董国华, 张文治, 白丽明, 杜海瑶, 郎坤, 李欣. 基于玉米淀粉制备绿色碳量子点及氢离子/氢氧根离子调节荧光开关性能[J]. 应用化学, 2021, 38(2): 202-211. |
[15] | 黄译文, 王丽艳, 赵冰, 宋波. 一种水溶性甲氧基萘乙烯半菁合成及对铬(Ⅲ)离子的荧光检测[J]. 应用化学, 2021, 38(11): 1503-1511. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||