1 |
LIANG P, GUO L, LIU Y, et al. Application of liquid-phase microextraction for the determination of phoxim in water samples by high performance liquid chromatography with diode array detector[J]. Microchem J, 2005, 80(1): 19-23.
|
2 |
ZHOU T, XIAO X, LI G. Microwave accelerated selective soxhlet extraction for the determination of organophosphorus and carbamate pesticides in ginseng with gas chromatography/mass spectrometry[J]. Anal Chem, 2012, 84(13): 5816-5822.
|
3 |
WATANABE E, MIYAKE S, YOGO Y. Review of enzyme-linked immunosorbent assays (ELISAs) for analyses of neonicotinoid insecticides in agro-environments[J]. J Agric Food Chem, 2013, 61(51): 12459-12472.
|
4 |
ZHANG L, ZHANG A, DU D, et al. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides[J]. Nanoscale, 2012, 4(15): 4674-4679.
|
5 |
PINXTEREN M V, BAUER C, POPP P. High performance liquid chromatography-tandem mass spectrometry for the analysis of 10 pesticides in water: a comparison between membrane-assisted solvent extraction and solid phase extraction[J]. J Chromatogr A, 2009, 1216(31): 5800-5806.
|
6 |
LESUEUR C, GARTNER M, MENTLER A, et al. Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry[J]. Talanta, 2008, 75(1): 284-293.
|
7 |
FILHO A M, SANTOS F, PEREIRA P. Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS) for the determination of pesticide residues in mangoes[J]. Talanta, 2010, 81(1): 346-354.
|
8 |
CHUA A L, CHAN Y Y, RAVICHANDRAN M, et al. A rapid DNA biosensor for the molecular diagnosis of infectious disease[J]. Biosens Bioelectron, 2011, 26(9): 3825-3831.
|
9 |
TELES F, FONSECA L P. Trends in DNA biosensors[J]. Talanta, 2009, 77(2): 606-623.
|
10 |
LEE S, YUEN K, JOLLIFFE K A, et al. Fluorescent and colorimetric chemosensors for pyrophosphate[J]. Chem Soc Rev, 2015, 44(7): 1749-1762.
|
11 |
TOLESSA T, TAN Z Q, YIN Y G, et al. Single-drop gold nanoparticles for headspace microextraction and colorimetric assay of mercury (II) in environmental waters[J]. Talanta, 2018, 176: 77-84.
|
12 |
HAN L, ZENG L, WEI M, et al. A V2O3-ordered mesoporous carbon composite with novel peroxidase-like activity towards the glucose colorimetric assay[J]. Nanoscale, 2015, 7(27): 11678-11685.
|
13 |
WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes[J]. Chem Soc Rev, 2013, 42(14): 6060-6093.
|
14 |
LIN Y, REN J, QU X. Catalytically active nanomaterials: a promising candidate for artificial enzymes[J]. Acc Chem Res, 2014, 47(4): 1097-1105.
|
15 |
YAN L, ZHAO J, JIANG P, et al. Amphiphilic polyoxometalate-paired polymer coated Fe3O4: magnetically recyclable catalyst for epoxidation of bio-derived olefins with H2O2[J]. ACS Appl Mater Interfaces, 2014, 6(8): 5947-5954.
|
16 |
JIANG T, SONG Y, WEI T, et al. Sensitive detection of Escherichia coli O157:H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification[J]. Biosens Bioelectron, 2016, 77: 687-694.
|
17 |
CAO G J, JIANG X, ZHANG H, et al. Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials[J]. RSC Adv, 2017, 7(82): 52210-52217.
|
18 |
CAO W, LIN J, MUHAMMAD F, et al. Porous ruthenium selenide nanoparticle as a peroxidase mimic for glucose bioassay[J]. J Anal Test, 2019, 3(3): 253-259.
|
19 |
LI R Y, LI Z J, LIU J K. Histidine-functionalized carbon-based dot-zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres[J]. J Colloid Interface Sci, 2017, 493: 24-31.
|
20 |
YADAV P K, SINGH V K, CHANDRA S, et al. Green synthesis of fluorescent carbon quantum dots from azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits[J]. ACS Biomater Sci Engine, 2018, 5(2): 623-632.
|
21 |
HU Y, GAO X J, ZHU Y, et al. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics[J]. Chem Mater, 2018, 30(18): 6431-6439.
|
22 |
WANG G L, XU X F, WU X M, et al. Visible-light-stimulated enzymelike activity of graphene oxide and its application for facile glucose sensing[J]. J Phys Chem C, 2014, 118(48): 28109-28117.
|
23 |
LI B, DU Y, LI T, et al. Investigation of 3,3′,5,5′-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme[J]. Anal Chim Acta, 2009, 651(2): 234-240.
|
24 |
SHENG E, LU Y, TAN Y, et al. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in a colorimetric assay of chlorothalonil in food samples [J]. Food Chem, 2020, 331: 127090.
|
25 |
ZHENG M, WANG C, WANG Y, et al. Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim[J]. Talanta, 2018, 185: 309-315.
|
26 |
KUAHWAHA A, SINGH G, SHARMA M. Colorimetric sensing of chlorpyrifos through negative feedback inhibition of the catalytic activity of silver phosphate oxygenase nanozymes[J]. RSC Adv, 2020, 10(22): 13050-13065.
|
27 |
ZHANG S X, XUE S F, DENG J, et al. Polyacrylic acid-coated cerium oxide nanoparticles: an oxidase mimic applied for colorimetric assay to organophosphorus pesticides[J]. Biosens Bioelectron, 2016, 85: 457-463.
|
28 |
LIU P, LI X, XU X, et al. Analyte-triggered oxidase-mimetic activity loss of Ag3PO4/UiO-66 enables colorimetric detection of malathion completely free from bioenzymes[J]. Sens Actuators B: Chem, 2021, 338: 129866.
|