应用化学 ›› 2022, Vol. 39 ›› Issue (8): 1294-1302.DOI: 10.19894/j.issn.1000-0518.210465
唐连波1, 付大友1, 陈琦2, 奉阳润2, 熊桠林1, 王竹青1()
收稿日期:
2021-09-15
接受日期:
2022-01-11
出版日期:
2022-08-01
发布日期:
2022-08-04
通讯作者:
王竹青
基金资助:
Lian-Bo TANG1, Da-You FU1, Qi CHEN2, Yang-Run FENG2, Ya-Lin XIONG1, Zhu-Qing WANG1()
Received:
2021-09-15
Accepted:
2022-01-11
Published:
2022-08-01
Online:
2022-08-04
Contact:
Zhu-Qing WANG
About author:
wangzq128@163.comSupported by:
摘要:
采用一步溶剂热法合成了能够发射绿色荧光的水溶性碳量子点(CDs),并对其进行了透射电子显微镜(TEM)、紫外可见光谱、荧光光谱以及红外谱图等一系列表征。基于该CDs增强的H2O2-KOH-CO2气液相化学发光体系,利用自助研发的气液相化学发光检测仪实现了对CO2气体的实时在线检测。研究了H2O2、KOH以及CDs浓度对发光强度的影响,结果表明当H2O2浓度为0.15 mol/L、KOH浓度为0.40 mol/L以及CDs溶液与KOH溶液体积比为1∶2时所测得的化学发光强度最大。在最优条件下,在0.196~49 mg/L范围内,CO2浓度与发光强度呈现出良好的线性关系;计算得到二氧化碳的检测限为0.049 mg/L;重复检测11次1.96和4.56 mg/L的CO2的相对标准偏差分别为1.46%和0.65%。采用该方法检测CO2具有灵敏度高、选择性好、精密度高以及能够实现连续在线检测等优点。
中图分类号:
唐连波, 付大友, 陈琦, 奉阳润, 熊桠林, 王竹青. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学, 2022, 39(8): 1294-1302.
Lian-Bo TANG, Da-You FU, Qi CHEN, Yang-Run FENG, Ya-Lin XIONG, Zhu-Qing WANG. Enhanced Gas⁃Liquid Chemiluminescence by Carbon Dots for Determination of Carbon Dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302.
图1 CO2检测示意图A.气液相化学发光反应器示意图,上端为进液口,下端为出液口,白色部分是亲水材质的纤维条;左侧为进气口,右侧为排气口;B. CO2检测流路示意图,M1和M2为层流式气体质量控制器,PMT是光电倍增管
Fig.1 Schematic diagram of detecting CO2A. The structure of the GL-CL reactor with a top liquid inlet,a bottom liquid outlet,a left gas inlet and a right gas outlet. The white part is a hydrophilic fiber-string. B. The schematic diagram of the detection flow system. M1 and M2 are Laminar flow gas quality controllers,PMT is a photomultiplier
图2 CDs的TEM照片和粒径分布图A.TEM照片,右上角插图为HRTEM图; B.粒径分布图
Fig.2 TEM image and particle size distribution map of CDsA.TEM image,upper right illustration is HRTEM image; B.particle size distribution map
图4 310~370 nm激发光波长范围CDs的荧光光谱图左上角插图为该CDs分别是在普通光照和紫外光照射下的照片
Fig.4 The fluorescence spectra for CDs excited at the wavelength range of 310~370 nmThe inset on the top left corner is a picture of CDs that are radiated by normal light and ultraviolet light
图6 0.20~1.0 mol/L范围内KOH浓度对发光强度的影响c(H2O2)=0.15 mol/L,负高压: 600 V; ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
Fig.6 The effect of the concentration of KOH on the CL intensity in the range of 0.20~1.0 mol/Lc(H2O2)=0.15 mol/L, negative high voltage: 600 V;ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
图7 0.05~0.7 mol/L范围内H2O2浓度对发光强度的影响c(KOH)=0.40 mol/L,负高压:600 V; ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
Fig.7 The effect of the concentration of H2O2 on the CL intensity in the range of 0.05~0.7 mol/Lc(KOH)=0.40 mol/L, negative high voltage: 600 V; ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
图8 0∶1~1∶1范围内CDs溶液与KOH溶液的不同体积比对发光强度的影响c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,负高压:600 V; ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
Fig.8 The CL intensities are recorded under different volume ratios of CDs to KOH in the range of 0∶1~1∶1c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,negative high voltage:600 V; ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
图9 不同的稀释气体对发光强度的影响c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2,负高压:600 V; ρ(CO2)=11.76 mg/L
Fig.9 The effect of difference of the mixed gas on the CL intensityc(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2,negative high voltage: 600 V; ρ(CO2)=11.76 mg/L
图10 不同混合气体对发光强度的影响c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2,负高压:600 V; ρ(CO2)=11.76 mg/L,ρ(SO2)=28.60 μg/L,ρ(NO2)=20.50 μg/L,ρ(NO)= ρ(CH2O)=13.40 μg/L
Fig.10 The effect of different mixed gas on the CL intensityc(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2,negative high voltage:600 V.ρ(CO2)=11.76 mg/L,ρ(SO2)=28.60 μg/L, ρ(NO2)=20.50 μg/L, ρ(NO)= ρ(CH2O)=13.40 μg/L
图11 化学发光强度和CO2质量浓度的线性关系c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2; ρ(CO2)=0.196~49.0 mg/L,负高压:900 V
Fig.11 The linear relation between the mass concentration of CO2 and the CL intensityc(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2, ρ(CO2)=0.196~49.0 mg/L,negative high voltage:900 V
图12 重复检测11次1.96 mg/L CO2(A)和4.56 mg/L CO2的发光强度(B)A.ρ(CO2)=1.96 mg/L;B.ρ(CO2)=4.56 mg/L,负高压:900 V;c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2
Fig.12 The CL intensity of detecting 1.96 mg/L CO2 (A) and 4.56 mg/L CO2 (B) respectively,each repeating 11 timesA.ρ(CO2)=1.96 mg/L;B.ρ(CO2)=4.56 mg/L,negative high voltage:900 V;c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2
图13 8:00~21:00同一位置CO2质量浓度变化c(H2O2)=0.15 mol/L; c(KOH)=0.4 mol/L; V(CDs)∶V(KOH)=1∶2; 负高压:900 V
Fig.13 The change of mass concentration of CO2 at the same place in the range of 8:00~21:00c(H2O2)=0.15 mol/L; c(KOH)=0.40 mol/L; V(CDs)∶V(KOH)=1∶2; negative high voltage:900 V
1 | SYED N A S, LIN J M. Recent advances in chemiluminescence based on carbonaceous dots[J]. Colloid Interface Sci, 2017, 241:24-36. |
2 | SHEN C L, LOU Q, LIU K K, et al. Chemiluminescent carbon dots: synthesis, properties, and applications[J]. Nano Today, 2020, 35: 1126-1178. |
3 | ZHANG D K, ZHENG Y Z, DOU X N, et al. Heterogeneous chemiluminescence from gas-solid phase interactions of ozone with alcohols, phenols, and saccharides[J]. Langmuir, 2017, 33(15): 3666-3671. |
4 | HITOSI K, DAISUKE Y, TAKAHIRO F, et al. A novel luminol chemiluminescence induced by photoexcited ketones: a selective determination method for acetone in wastewater[J]. Talanta, 2021, 3: 798-803. |
5 | SHEN C L, LOU Q, ZHANG G S, et al. Trigonal nitrogen activates high-brightness chemiluminescent carbon nanodots[J]. ACS Mater Lett, 2021, 36: 826-837. |
6 | MUHANMAD S, LOU B H, MOHAMED I H, et al. Chemiluminescence of lucigenin-allantoin and its application for the detection of allantoin[J].Anal Chem, 2017, 89(3): 1863-1869. |
7 | 李佳祁, 付大友, 王竹青, 等. 基于气液相化学发光技术的臭氧在线检测方法[J]. 应用化学, 2020, 37(1): 96-102. |
LI J Q, FU D Y, WANG Z Q, et al. Online ozone detection method based on gas-liquid chemiluminescence technology[J]. Chinese J Appl Chem, 2020, 37(1): 96-102. | |
8 | 齐斌, 王竹青, 杨红艳, 等. 在线二氧化氮化学发光测定仪的研制[J]. 分析化学, 2010, 38(4): 607-610. |
QI B, WANG Z Q, YANG H Y, et al. On-line chemiluminescence instrument for measurement of nitrogen dioxide[J]. Chinese J Anal Chem, 2010, 38(4): 607-610. | |
9 | LIU C, ZHANG P, TIAN F, et al. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging[J]. J Mater Chem, 2011, 21: 13163-13167. |
10 | WANG F, PANG S, WANG L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents[J]. Chem Mater, 2012, 48: 8835-8837. |
11 | XUE W, LIN Z, CHEN H, et al. Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots[J]. J Phys Chem C, 2011, 115: 21707-21714. |
12 | LIN Z, XUE W, CHEN H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing[J]. Anal Chem, 2011, 83: 8245-8251. |
13 | MOLAEI M J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence[J]. Talanta, 2018, 42(12): 19390-19494. |
14 | JANITA P C, LIU X, CHOW C, et al. Diagnostic accuracy of end-tidal carbon dioxide detection in determining correct placement of nasogastric tube: an updated systematic review with meta-analysis[J]. Nurs Stud, 2021, 123: 8746-8752. |
15 | ADIBAH I D, WAN M K, KHAIRUL A W. Exploitation on the organic semiconductors nitro ethynylated-thiourea molecular framework as efficient sensing materials in the detection of carbon dioxide (CO2) by electron donating groups (EDGs) alteration[J]. J Environ Chem Eng, 2021, 9(5): 106-112. |
16 | LI X, TANG B, WU B, et al. Highly sensitive diffraction grating of hydrogels as sensors for carbon dioxide detection[J]. Ind Eng Chem Res, 2021, 60(12): 4639-4649. |
17 | CHEN S Y, YU H, ZHAO C, et al. Indolo[3,2-b]carbazole derivative as a fluorescent probe for fluoride ion and carbon dioxide detections[J]. Sens Actuators B, 2017, 250: 591-600. |
18 | ZHU J L, JIA P P, TAN S Y, et al. Small-molecule fluorescent probes for the detection of carbon dioxide[J]. Chinese Chem Lett, 2018, 29(10): 1445-1450. |
19 | 王竹青, 付大友, 袁东, 等. 一种二氧化碳气体检测装置及检测方法: CN,110006876A[P]. 2019. |
WANG Z Q, FU D Y, YUAN D, et al. The invention discloses a carbon dioxide gas detecting device and detecting method: CN,110006876A[P]. 2019. | |
20 | TOOBA H, MOHAMMAD A, JAMSHID L, et al. Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine[J]. Microchim Acta, 2015, 182(3/4): 789-796. |
21 | MOHAMMAD A, JAMSHID L, TOOBA H. A novel chemiluminescence method for determination of bisphenol A based on the carbon dot-enhanced HCO3 --H2O2 system[J]. J Lumin, 2014, 158: 160-164. |
[1] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[2] | 张月霞, 范小鹏, 曹宇娟, 杨欣彤, 李忠平, 杨振华, 董川. 热解法制备油溶性碳量子点用于土霉素的检测[J]. 应用化学, 2023, 40(4): 509-517. |
[3] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[4] | 董国华, 郝丽娟, 张文治, 柴东凤, 赵明, 郎坤. 碳量子点纳米材料在铅卤钙钛矿太阳能电池中的应用研究进展[J]. 应用化学, 2022, 39(5): 707-722. |
[5] | 吴雪婷, 于洋, 宋术岩, 张洪杰. 人工固碳技术—热催化还原CO2催化剂的研究进展[J]. 应用化学, 2022, 39(4): 599-615. |
[6] | 薄纯辉, 姜维佳, 王玉高, 石利红, 董川. 煤基碳量子点合成研究进展[J]. 应用化学, 2021, 38(7): 767-788. |
[7] | 温广明, 焦婷, 杜孝艳, 李忠平. 硫氮共掺杂碳量子点的制备及应用[J]. 应用化学, 2021, 38(6): 722-730. |
[8] | 郝丽娟, 王婷, 董国华, 张文治, 白丽明, 杜海瑶, 郎坤, 李欣. 基于玉米淀粉制备绿色碳量子点及氢离子/氢氧根离子调节荧光开关性能[J]. 应用化学, 2021, 38(2): 202-211. |
[9] | 胡国文, 乔玉玲. 叶酸修饰的碳量子点在体外癌细胞成像中的应用[J]. 应用化学, 2020, 37(9): 1003-1009. |
[10] | 胡国文, 乔玉玲. 叶酸修饰的碳量子点在体外癌细胞成像中的应用[J]. 应用化学, 2020, 37(9): 0-0. |
[11] | 郭红霞, 崔继方, 刘利. 氧空位增强光催化还原CO2性能方面的研究进展[J]. 应用化学, 2020, 37(3): 256-263. |
[12] | 高佳, 宋夫交, 程文强, 葛艳, 许琦. Pd-Cu/ZrO2催化CO2加氢制甲醇的性能[J]. 应用化学, 2020, 37(2): 160-167. |
[13] | 蔡毅,郭洪辰,曹瀚,高凤翔,周庆海,王献红. 耐紫外光老化CO2共聚物的合成与性能[J]. 应用化学, 2019, 36(11): 1248-1256. |
[14] | 袁廷,孟婷,李淑花,范楼珍. 基于磷光材料的电致发光二极管研究进展[J]. 应用化学, 2018, 35(8): 871-880. |
[15] | 傅鹏,周丽华,唐连凤,蔡茜茜,袁勇. 碳量子点的制备及其在能源与环境领域应用进展[J]. 应用化学, 2016, 33(7): 742-755. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||