Please wait a minute...
应用化学
今天是
应用化学  2018, Vol. 35 Issue (8): 871-880    DOI: 10.11944/j.issn.1000-0518.2018.08.180154
  综合评述 本期目录 | 过刊浏览 | 高级检索 |
基于磷光材料的电致发光二极管研究进展
袁廷,孟婷,李淑花,范楼珍()
北京师范大学化学学院 北京 100875
Recent Development of Electroluminescent Diodes Based on Phosphorescent Materials
YUAN Ting,MENG Ting,LI Shuhua,FAN Louzhen()
Department of Chemistry,Beijing Normal University,Beijing 100875,China
全文: PDF(3602 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

电致发光二极管(LEDs)具有能耗低、寿命长、绿色环保等优点,在固态照明、全色显示等领域具有广阔的应用前景。 与传统的荧光电致LEDs相比,磷光电致LEDs能够同时利用单重态和三重态激子,理论上可以使器件的内量子效率达到100%,突破5%的外量子效率极限。 因此,发展高效的磷光材料以及实现其在电致LEDs中的应用是非常有意义的。 本文综述了目前主要的磷光材料,包括有机金属配合物、纯有机分子、聚合物、金属有机框架材料和碳量子点等,并总结了稀有金属配合物和纯有机分子在电致磷光 LEDs中的研究进展,同时对电致磷光LEDs的发展前景进行展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁廷
孟婷
李淑花
范楼珍
关键词 电致发光二极管磷光材料有机金属配合物金属有机框架碳量子点    
Abstract

The development of electroluminescent light-emitting diodes(LEDs) has been received widespread attention for their potential applications in solid-state lighting technology, full-color displays due to their superior properties such as energy-saving, robust, long-lifetime and environment-friendly features. The notable advantage of electrophosphorescent LEDs is that they can simultaneously utilize both singlet and triplet exciton states which can reach to 100% internal quantum efficiency theoretically compared with those of conventional fluorescent LEDs. Therefore, it is highly desired to develop LEDs based on phosphorescent materials. In this review, we mainly discussed the latest researches on phosphorescent materials, including organometallic complexes, organic molecules, polymers, metal-organic frameworks and carbon quantum dots, etc., and focused on the applications of electrophosphorescent materials in LEDs. We hope this review will provide critical insights to inspire more exciting researches on environment-friendly phosphorescent materials for the application of electrophosphorescent LEDs in the near future.

Key wordselectrophosphorescent light-emitting diodes    phosphorescent materials    organometallic complexes    metal-organic frameworks    carbon quantum dots
收稿日期: 2018-05-04           接受日期: 2018-06-25
基金资助:国家自然科学基金(21233003,21573019)和中央高校基本科研业务费专项资金资助项目
通讯作者: 范楼珍     E-mail: lzfan@bnu.edu.cn
引用本文:   
袁廷,孟婷,李淑花,范楼珍. 基于磷光材料的电致发光二极管研究进展[J]. 应用化学, 2018, 35(8): 871-880.
YUAN Ting,MENG Ting,LI Shuhua,FAN Louzhen. Recent Development of Electroluminescent Diodes Based on Phosphorescent Materials. Chinese Journal of Applied Chemistry, 2018, 35(8): 871-880.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2018.08.180154      或      http://yyhx.ciac.jl.cn/CN/Y2018/V35/I8/871
图1电致发光器件的结构及其能级图
Fig.1The structure and energy level diagrams of electroluminescent devices
图2磷光材料的电致发光过程(a)和光致发光过程(b)
Fig.2Photoluminescence(a) and electroluminescence(b) processes in phosphorescent materials
图3磷光材料的发展里程碑
Fig.3Milestones in the development of phosphorescence materials
(1)Ma et al prepared electric phosphorescent luminescence device for the first time in 1998. (2)Polymer:Fraser and co-workers demonstrated phosphorescence polymer in 2007[4]. (3)Carbon dots: Zhao et al realized phosphorescence by dispersing carbon dots into poly(vinyl alcohol)(PVA) in 2013[7]. (4)Single-component organics:Huang et al reported H-aggregation induced phosphorescence in purely organic compounds in 2015[8]. (5)Organic host guest system:Adachi and co-workers reported Application of organic phosphorescence materials in OLEDs in 2015[10]. (6) MOFs:Yan and Yang achieved phosphorescence in MOFs in 2016[9]
图4(1)金属有机框架磷光材料[23]Zn-IPA(a)、Zn-TPA-DMF(b)、MOF-5(c)、G4@ZIF-8(d)、CP1(e)、CP2(f)和(2)聚合物磷光材料[4]
Fig.4(1)Phosphorescence MOFs[23] of Zn-IPA(a), Zn-TPA-DMF(b), MOF-5(c), G4@ZIF-8(d), CP1(e), CP2(f). (2)Organic phosphorescence polymers[4]
图5(a)btp2Ir(acac)器件的外量子效率和流明效率与电流密度关系图[57]。(b)用Ir(Bu(ppy)3)制备器件的效率与电流密度关系图[18]。(c)Ir(PPy)3 掺杂TAZ中的器件器件能级图[57]。(d)可溶解的蓝色磷光材料结构式与其电致发光器件数据图[58]
Fig.5(a)External quantum efficiency and power efficiency of btp2Ir(acac)device vs current density[57]. (b)Efficiency of Ir(Bu(ppy)3)device vs current density[18]. (c)Energy diagrams of Ir(PPy)3 doped TAZ device[57]. (d)Structure of Ir complexs and electroluminescence device data[58]
图6有机磷光材料在电致LEDs中的应用[10]
Fig.6Application of organic phosphorescence materials in OLEDs[10]
(a)POLED structure with energy levels in eV. (b)Photographs of electroluminescence during(Voltage ON) and after(Voltage OFF) the electrical excitation of a device based on host of CzSte and guest of DMFLTPD. (c)Fluorescence(black) and phosphorescence(red) spectra of a DMFLTPD-doped(1% mass fraction) film in CzSte, and EL spectra of the POLED at different time during(blue) and after(green) electrical excitation. (d)Transient EL decay curve of the device after the applied voltage was turned off. (e)EQE-current density characteristics of the POLED
[1] Helfrich W,Schneider W G.Recombination Radiation in Anthracene Crystals[J]. Phys Rev Lett,1965,14(7):229-231.
[2] Hoshino S,Suzuki H.Electroluminescence from Triplet Excited States of Benzophene[J]. Appl Phys Lett,1996,69(2):224-227.
[3] Baldo M A,O'Brien D F,You Y,et al. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J]. Nature,1998,395(6698):151-154.
[4] Zhang G Q,Chen J B,Payne Sarah J,et al. Multi-Emissive Difluoroboron Dibenzoylmethane Polylactide Exhibiting Intense Fluorescence and Oxygen-Sensitive Room-Temperature Phosphorescence[J]. J Am Chem Soc,2007,129(29):8942-8943.
[5] Yuan W Z,Shen X Y,Zhao H,et al. Crystallization-induced Phosphorescence of Pure Organic Luminogens at Room Temperature[J]. J Phys Chem C,2010,114(13):6090-6099.
[6] Bolton O,Lee K,Kim H J,et al. Activating Efficient Phosphorescence from Purely Organic Materials by Crystal Design[J]. Nat Chem,2011,3(3):201-210.
[7] Deng Y H,Zhao D X,Chen X,et al. Long Lifetime Pure Organic Phosphorescence Based on Water Soluble Carbon Dots[J]. Chem Commun,2013,49(51):5751-5753.
[8] An Z F,Zheng C,Tao Y,et al. Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence[J]. Nat Mater,2015,14(7):685-690.
[9] Yang X G,Yan D P.Strongly Enhanced Long-Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal-Organic Hybrids[J]. Adv Opt Mater,2016,4(6):897-905.
[10] Kabe R,Notsuka N,Yoshida K,et al. Afterglow Organic Light-Emitting Diode[J]. Adv Mater,2016,28(4):655-660.
[11] Xue P Z,Sun J B,Chen P,et al. Luminescence Switching of a Persistent Room-temperature Phosphorescent Pure Organic Molecule in Response to External Stimuli[J]. Chem Commun,2015,51(52):10381-10384.
[12] Li C Y,Tang X,Zhang L Q,et al. Reversible Luminescence Switching of an Organic Solid:Controllable On-Off Persistent Room Temperature Phosphorescence and Stimulated Multiple Fluorescence Conversion[J]. Adv Opt Mater,2015,3(9):1184-1190.
[13] Katsurada Y,Hirata S,Totani K,et al. Photoreversible On-Off Recording of Persistent Room-Temperature Phosphorescence[J]. Adv Opt Mater,2015,3(12):1726-1737.
[14] DeRosa C A,Samonina-Kosicka J,Fan Z Y,et al. Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide[J]. Macromolecules,2015,48(9):2967-2977.
[15] Jiang K,Zhang L,Lu J F,et al. Triple-Mode Emission of Carbon Dots:Applications for Advanced Anti-Counterfeiting[J]. Angew Chem Int Ed,2016,128(25):7347-7351.
[16] Jiang K,Wang Y H,Gao X L,et al. Facile, Quick, and Gram-Scale Synthesis of Ultralong-Lifetime Room-Temperature-Phosphorescent Carbon Dots by Microwave Irradiation[J]. Angew Chem Int Ed,2018,57(21):6216-6220.
[17] Yang Z Y,Mao Z,Zhang X P,et al. Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence[J]. Angew Chem Int Ed,2016,55(6):2181-2185.
[18] Fukagawa H,Shimizu T,Hanashima H,et al. Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Diodes Using Platinum Complexes[J]. Adv Mater,2012,24(37):5099-5103.
[19] Wang H,Meng L Q,Shen X X,et al. Highly Efficient Orange and Red Phosphorescent Organic Light-Emitting Diodes with Low Roll-Off of Efficiency Using a Novel Thermally Activated Delayed Fluorescence Material as Host[J]. Adv Mater,2015,27(27):4041-4047.
[20] Han C M,Zhang Z S,Xu H,et al. Controllably Tuning Excited-State Energy in Ternary Hosts for Ultralow-Voltage-Driven Blue Electrophosphorescence[J]. Angew Chem Int Ed,2012,51(40):10104-10108.
[21] Fateminia S M A,Mao Z,Xu S D,et al. Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications[J]. Angew Chem Int Ed,2017,56(40):12160-12164.
[22] Li Q J,Zhou M,Yang M Y,et al. Induction of Long-lived Room Temperature Phosphorescence of Carbon Dots by Water in Hydrogen-bonded Matrices[J]. Nat Commun,2018,9:7341-7348.
[23] Xu S,Chen R F,Zhen C,et al. Excited State Modulation for Organic Afterglow:Materials and Applications[J]. Adv Mater,2016,28(45):9920-9940.
[24] Yang Z Y,Mao Z,Xie Z L,et al. Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials[J]. Chem Soc Rev,2017,46(3):915-1016.
[25] ZHAO Xuesen,CUI Rongzhen,LI Yunhui,et al. Research Progress on Red Iridium Complexes Phosphorescent Materials and Devices[J]. Chinese J Appl Chem,2016,33(9):1003-1007(in Chinese). 赵学森,崔荣朕,李云辉,等. 红色铱配合物磷光材料及器件的研究进展[J]. 应用化学,2016,33(9):1003-1007.
[26] Clapp D B.The Phosphorescence of Tetraphenylmethane and Certain Related Substances[J]. J Am Chem Soc,1939,61(2):523-524.
[27] Bilen C S,Harrison N,Morantz D J.Unusual Room Temperature Afterglow in Some Crystalline Organic Compounds[J]. Nature,1978,271(5642):235-237.
[28] Gong Y Y,Chen G,Peng Q,et al. Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens[J]. Adv Mater,2015,27(40):6195-6201.
[29] Yang Z Y,Mao Z,Zhang X P,et al. Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence[J]. Angew Chem Int Ed,2016,55(6):2181-2185.
[30] He Z K,Zhao W J,Lam Jacky W Y,et al. White Light Emission from a Single Organic Molecule with Dual Phosphorescence at Room Temperature[J]. Nat Commun,2017,8:4161-4168.
[31] Yang J,Zhen X,Wang B,et al. The Influence of the Molecular Packing on the Room Temperature Phosphorescence of Purely Organic Luminogens[J]. Nat Commun,2018,9:8401-8408.
[32] Mieno H,Kabe R,Notsuka N,et al. Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8[J]. Adv Opt Mater,2016,4(7):1015-1021.
[33] Yang Y S,Wang K Z,Yan D P.Ultralong Persistent Room Temperature Phosphorescence of Metal Coordination Polymers Exhibiting Reversible pH-Responsive Emission[J]. ACS Appl Mater Interfaces,2016,8(24):15489-15496.
[34] Pfister A,Zhang G,Zareno J,et al. Boron Polylactide Nanoparticles Exhibiting Fluorescence and Phosphorescence in Aqueous Medium[J]. ACS Nano,2008,2(6):1252-1258.
[35] Samoninakosicka J,Derosa C A,Morris W A,et al. Dual-Emissive Difluoroboron Naphthyl-Phenyl β-DiketonatePolylactide Materials: Effects of Heavy Atom Placement and Polymer Molecular Weight[J]. Macromolecules,2014,47(11):3736-3746.
[36] Derosa C A,Samoninakosicka J,Fan Z,et al. Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide[J]. Macromolecules,2015,48(9):2967-2977.
[37] Al-Attar H A,Monkman A P. Room-Temperature Phosphorescence From Films of Isolated Wate-Soluble Conjugated Polymers in Hydrogen-Bonded Matrices[J]. Adv Funct Mater,2012,22(18):3824-3832.
[38] Fan Z T,Li Y C,Li X H,et al. Surrounding Media Sensitive Photoluminescence of Boron-doped Graphene Quantum Dots for Highly Fluorescent Dyed Crystals, Chemical Sensing and Bioimaging[J]. Carbon,2014,70:149-156.
[39] Tan X Y,Li Y C,Li X H,et al. Electrochemical Synthesis of Small-sized Red Fluorescent Graphene Quantum Dots as a Bioimaging Platform[J]. Chem Commun,2015,51(13):2544-2546.
[40] Fan Z T,Li S H,Yuan F L,et al. Fluorescent Graphene Quantum Dots for Biosensing and Bioimaging[J]. RSC Adv,2015,5(25):19773-19789.
[41] Yuan F L,Ding L,Li Y C,et al. Multicolor Fluorescent Graphene Quantum Dots Colorimetrically Responsive to All-pH and a Wide Temperature Range[J]. Nanoscale,2015,7(27):11727-11733.
[42] Guo R H,Zhou S X,Li Y C,et al. Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe3+ in Cancer Stem Cells[J]. ACS Appl Mater Interfaces,2015,7(43):23958-23966.
[43] Yuan F L,Li S H,Fan Z T,et al. Shining Carbon Dots:Synthesis and Biomedical and Optoelectronic Applications[J]. Nano Today,2016,11(5):565-586.
[44] Wang Z F,Yuan F L,Li X H,et al. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes[J]. Adv Mater,2017,29(37):1702910.
[45] Fan Z T,Zhou S X,Garcia C,et al. pH-Responsive Fluorescent Graphene Quantum Dots for Fluorescence-guided Cancer Surgery and Diagnosis[J]. Nanoscale,2017,9(15):4928-4933.
[46] Yuan F L,Wang Z B,Li X H,et al. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes[J]. Adv Mater,2017,29(3):1604436.
[47] Yuan F L,Yuan T,Sui L Z,et al. Engineering Triangular Carbon Quantum Dots with Unprecedented Narrow Bandwidth Emission for Multicolored LEDs[J]. Nat Commun,2018,9:22491-224911.
[48] Tan J,Zhang J,Wang L,et al. Synthesis of Smphiphilic Carbon Quantum Dots with Phosphorescence Properties and Their Multifunctional Applications[J]. J Mater Chem C,2016,4(42):10146-10153.
[49] Tan J,Zou R,Zhang J,et al. Large-scale Synthesis of N-Doped Carbon Quantum Dots and Their Phosphorescence Properties in a Polyurethane Matrix[J]. Nanoscale,2016,8(8):4742-4747.
[50] Dong X W,Wei L M,Su Y J,et al. Efficient Long Lifetime Room Temperature Phosphorescence of Carbon Dots in a Potash Alum Matrix[J]. J Mater Chem C,2015,3(12):2798-2801.
[51] Li Q J,Zhou M,Yang Q F,et al. Efficient Room-Temperature Phosphorescence from Nitrogen-Doped Carbon Dots in Composite Matrices[J]. Chem Mater,2016,28(22):8221-8227
[52] Bai L Q,Xue N,Wang X R,et al. Activating Efficient Room Temperature Phosphorescence of Carbon Dots by Synergism of Orderly Non-noble Metals and Dual Structural Confinements[J]. Nanoscale,2017,9(20):6658-6664.
[53] Tao S Y,Lu S Y,Geng Y J,et al. Design of Metal-Free Polymer Carbon Dots:A New Class of Room-Temperature Phosphorescent Materials[J]. Angew Chem Int Ed,2018,57(9):2393-2398.
[54] Baldo M A,Lamasky S,Burrows P E,et al. Very High-efficiency Green Organic Light-emitting Devices Based on Electrophosphoresoence[J]. Appl Phys Lett,1999,75(1):4-6.
[55] Adachi C,Baldo M A,Forrest S R,et al. High-efficiency Red Electrophosphorescence Devices[J]. Appl Phys Lett,2001,78(11):1622-1624.
[56] Zhu W,Mo Y,Yuan M,et al. Highly Efficient Electrophosphorescent Devices Based on Conjugated Polymers Doped with Iridium Complexes[J]. Appl Phys Lett,2002,80(12):2045-2047.
[57] Adachi C,Baldo M A,Thompson M E,et al. Nearly 100% Internal Phosphorescence Efficiency in an Organic Light-emitting Device[J]. J Appl Phys,2001,90(10):5048-5051.
[58] Benjamin H,Zheng Y,Batsanov A S,et al. Sulfonyl-substituted Heteroleptic Cyclometalated Iridium(Ⅲ) Complexes as Blue Emitters for Solution-processable Phosphorescent Organic Light-emitting Diodes[J]. Inorg Chem,2016,55(17):8612-8627.
[1] 王雨桐, 范卫东, 肖振宇, 黄招娣, 徐林, 张亮亮, 邢立学, 戴昉纳, 孙道峰. 溶剂控制的铜基金属-有机框架物的合成与荧光性能[J]. 应用化学, 2017, 34(9): 1035-1045.
[2] 宫辽阔, 宋颖, 申南南, 张波, 吴兆锋, 黄小荥. 一例对二硫化碳具有荧光传感性能的Mg-金属有机框架化合物[J]. 应用化学, 2017, 34(9): 1059-1065.
[3] 郑秀英, 孔祥建, 龙腊生, 郑兰荪. 稀土簇基金属有机框架的合成、结构及磁学性质[J]. 应用化学, 2017, 34(9): 1086-1092.
[4] 赵学森,崔荣朕,李云辉,高莹,崔成哲. 红色铱配合物磷光材料及器件的研究进展[J]. 应用化学, 2016, 33(9): 1002-1008.
[5] 傅鹏,周丽华,唐连凤,蔡茜茜,袁勇. 碳量子点的制备及其在能源与环境领域应用进展[J]. 应用化学, 2016, 33(7): 742-755.
[6] 肖毅, 杨晰雅, 姜小英, 史慧珍, 黄红梅, 尹笃林, 毛丽秋. 纳微尺度铜金属有机框架催化过氧化氢氧化异丁香酚[J]. 应用化学, 2016, 33(10): 1168-1174.
[7] 崔荣朕, 唐艳茹, 马玉芹, 杨秀云, 耿丽华, 李云辉. 蓝色有机电致发光材料及器件的研究进展[J]. 应用化学, 2015, 32(8): 855-872.
[8] 唐艳茹, 成宝海, 高莹, 李云辉. 基于二氧化锰和金属有机框架化合物协同作用构建的立体复合阵列超级电容器电极[J]. 应用化学, 2014, 31(08): 977-982.
[9] 沙莎, 李军, 庄长福, 刘术侠, 高爽. 后修饰法合成介孔钴金属有机框架及其催化烯烃环氧化[J]. 应用化学, 2014, 31(07): 799-805.
[10] 张川洲, 谭辉, 毛燕, 李刚, 韩冬雪, 牛利. 发光碳量子点的合成、性质和应用[J]. 应用化学, 2013, 30(04): 367-372.
[11] 吴秋华, 王传红, 宋溪明, 吴抒遥, 姜玉春, 张国林. 微波辐射法合成喹喔啉铱(Ⅲ)配合物及其发光性质[J]. 应用化学, 2009, 26(07): 863-865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn